首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Autophagy》2013,9(10):1212-1221
ULK1 (Unc51-like kinase, hATG1) is a Ser/Thr kinase that plays a key role in inducing autophagy in response to starvation. ULK1 is phosphorylated and negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that ULK1 is not only a downstream effector of mTORC1 but also a negative regulator of mTORC1 signaling.1-3 Here, we investigated how ULK1 regulates mTORC1 signaling, and found that ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Deficiency or knockdown of ULK1 or its homolog ULK2 enhanced mTORC1 signaling, cell proliferation rates and accumulation of cell mass, whereas overexpression of ULK1 had the opposite effect. Knockdown of Atg13, the binding partner of ULK1 and ULK2, mimicked the effects of ULK1 or ULK2 deficiency or knockdown. Both insulin and leucine stimulated mTORC1 signaling to a greater extent when ULK1 or ULK2 was deficient or knocked down. In contrast, Atg5 deficiency did not have a significant effect on mTORC1 signaling and cell proliferation. The stimulatory effect of ULK1 knockdown on mTORC1 signaling occurred even in the absence of tuberous sclerosis complex 2 (TSC2), the negative regulator of mTORC1 signaling. In addition, ULK1 was found to bind raptor, induce its phosphorylation, and inhibit the kinase activity of mTORC1. These results demonstrate that ULK1 negatively regulates the kinase activity of mTORC1 and cell proliferation in a manner independent of Atg5 and TSC2. The inhibition of mTORC1 by ULK1 may be important to coordinately regulate cell growth and autophagy with optimized utilization of cellular energy.  相似文献   

2.
Jung CH  Seo M  Otto NM  Kim DH 《Autophagy》2011,7(10):1212-1221
ULK1 (Unc51-like kinase, hATG1) is a Ser/Thr kinase that plays a key role in inducing autophagy in response to starvation. ULK1 is phosphorylated and negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that ULK1 is not only a downstream effector of mTORC1 but also a negative regulator of mTORC1 signaling. ( 1-3) Here, we investigated how ULK1 regulates mTORC1 signaling, and found that ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Deficiency or knockdown of ULK1 or its homolog ULK2 enhanced mTORC1 signaling, cell proliferation rates and accumulation of cell mass, whereas overexpression of ULK1 had the opposite effect. Knockdown of Atg13, the binding partner of ULK1 and ULK2, mimicked the effects of ULK1 or ULK2 deficiency or knockdown. Both insulin and leucine stimulated mTORC1 signaling to a greater extent when ULK1 or ULK2 was deficient or knocked down. In contrast, Atg5 deficiency did not have a significant effect on mTORC1 signaling and cell proliferation. The stimulatory effect of ULK1 knockdown on mTORC1 signaling occurred even in the absence of tuberous sclerosis complex 2 (TSC2), the negative regulator of mTORC1 signaling. In addition, ULK1 was found to bind raptor, induce its phosphorylation, and inhibit the kinase activity of mTORC1. These results demonstrate that ULK1 negatively regulates the kinase activity of mTORC1 and cell proliferation in a manner independent of Atg5 and TSC2. The inhibition of mTORC1 by ULK1 may be important to coordinately regulate cell growth and autophagy with optimized utilization of cellular energy.  相似文献   

3.
In mammalian cells, the mammalian target of rapamycin (mTOR) forms an enzyme complex with raptor (together with other proteins) named mTOR complex 1 (mTORC1), of which a major target is the p70 ribosomal protein S6 kinase (p70S6K). A second enzyme complex, mTOR complex 2 (mTORC2), contains mTOR and rictor and regulates the Akt kinase. Both mTORC1 and mTORC2 are regulated by phosphorylation, complex formation and localization. So far, the role of p70S6K-mediated mTOR S2448 phosphorylation has not been investigated in detail. Here, we report that endogenous mTOR phosphorylated at S2448 binds to both, raptor and rictor. Experiments with chemical inhibitors of the mTOR kinase and of the phosphatidylinositol-3-kinase revealed that downregulation of mTOR S2448 phosphorylation correlates with decreased mTORC1 activity but can occur decoupled of effects on mTORC2 activity. In addition, we found that the correlation of the mTOR S2448 phosphorylation status with mTORC1 activity is not a consequence of effects on the assembly of mTOR protein and raptor. Our data allow new insights into the role of mTOR phosphorylation for the regulation of its kinase activity.  相似文献   

4.
Phosphatidic acid (PA) is a critical mediator of mitogenic activation of mammalian target of rapamycin complex 1 (mTORC1) signaling, a master regulator of mammalian cell growth and proliferation. The mechanism by which PA activates mTORC1 signaling has remained unknown. Here, we report that PA selectively stimulates mTORC1 but not mTORC2 kinase activity in cells and in vitro. Furthermore, we show that PA competes with the mTORC1 inhibitor, FK506 binding protein 38 (FKBP38), for mTOR binding at a site encompassing the rapamycin-FKBP12 binding domain. This leads to PA antagonizing FKBP38 inhibition of mTORC1 kinase activity in vitro and rescuing mTORC1 signaling from FKBP38 in cells. Phospholipase D 1, a PA-generating enzyme that is an established upstream regulator of mTORC1, is found to negatively affect mTOR-FKBP38 interaction, confirming the role of endogenous PA in this regulation. Interestingly, removal of FKBP38 alone is insufficient to activate mTORC1 kinase and signaling, which require PA even when the FKBP38 level is drastically reduced by RNAi. In conclusion, we propose a dual mechanism for PA activation of mTORC1: PA displaces FKBP38 from mTOR and allosterically stimulates the catalytic activity of mTORC1.  相似文献   

5.
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase   总被引:4,自引:0,他引:4  
The heterotrimeric mTORC1 protein kinase nucleates a signaling network that promotes cell growth in response to insulin and becomes constitutively active in cells missing the TSC1 or TSC2 tumor suppressors. Insulin stimulates the phosphorylation of S6K1, an mTORC1 substrate, but it is not known how mTORC1 kinase activity is regulated. We identify PRAS40 as a raptor-interacting protein that binds to mTORC1 in insulin-deprived cells and whose in vitro interaction with mTORC1 is disrupted by high salt concentrations. PRAS40 inhibits cell growth, S6K1 phosphorylation, and rheb-induced activation of the mTORC1 pathway, and in vitro it prevents the great increase in mTORC1 kinase activity induced by rheb1-GTP. Insulin stimulates Akt/PKB-mediated phosphorylation of PRAS40, which prevents its inhibition of mTORC1 in cells and in vitro. We propose that the relative strengths of the rheb- and PRAS40-mediated inputs to mTORC1 set overall pathway activity and that insulin activates mTORC1 through the coordinated regulation of both.  相似文献   

6.
In higher eukaryotes, growth factors promote anabolic processes and stimulate cell growth, proliferation, and survival by activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Deregulation of PI3K/Akt signaling is linked to human diseases, including cancer and metabolic disorders. The PI3K-dependent signaling kinase complex mTORC2 (mammalian target of rapamycin complex 2) has been defined as the regulatory Ser-473 kinase of Akt. The regulation of mTORC2 remains very poorly characterized. We have reconstituted mTORC2 by its assembly in vitro or by co-expression its four essential components (rictor, SIN1, mTOR, mLST8). We show that the functional mTOR kinase domain is required for the mTORC2 activity as the Ser-473 kinase of Akt. We also found that mTOR by phosphorylation of SIN1 prevents its lysosomal degradation. Thus, the kinase domain of mTOR is required for the functional activity of mTORC2, and it controls integrity of mTORC2 by maintaining the protein stability of SIN1.  相似文献   

7.
The mammalian target of rapamycin (mTOR) kinase is present in 2 functionally distinct complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). Active mTORC1 mediates phosphorylation of eIF4E-binding protein (4E-BP) and p70 S6 kinase (S6K), which is important for maintaining translation. During human cytomegalovirus (HCMV) infection, cellular stress responses are activated that normally inhibit mTORC1; however, previous data show that HCMV infection circumvents stress responses and maintains mTOR kinase activity. Amino acid deprivation is a stress response that normally inhibits mTORC1 activity. Amino acids can signal to mTORC1 through the Rag proteins, which promote the colocalization of mTORC1 with its activator Rheb-GTP in a perinuclear region, thereby inducing 4E-BP and S6K phosphorylation. As expected, our results show that amino acid depletion in mock-infected cells caused loss of mTORC1 activity and loss of the perinuclear localization; however, there was no loss of activity or perinuclear localization in HCMV-infected cells where the perinuclear localization of Rheb-GTP and mTOR coincided with the perinuclear assembly compartment (AC). This suggested that HCMV infection bypasses normal Rag-dependent amino acid signaling. This was demonstrated by short hairpin RNA (shRNA) depletion of Rag proteins, which had little effect on mTORC1 activity in infected cells but inhibited activity in mock-infected cells. Our data show that HCMV maintains mTORC1 activity in an amino acid- and Rag-independent manner through the colocalization of mTOR and Rheb-GTP, which occurs in association with the formation of the AC, thus bypassing inhibition that may result from lowered amino acid levels.  相似文献   

8.
SGK1 (serum- and glucocorticoid-induced protein kinase 1) is a member of the AGC (protein kinase A/protein kinase G/protein kinase C) family of protein kinases and is activated by agonists including growth factors. SGK1 regulates diverse effects of extracellular agonists by phosphorylating regulatory proteins that control cellular processes such as ion transport and growth. Like other AGC family kinases, activation of SGK1 is triggered by phosphorylation of a threonine residue within the T-loop of the kinase domain and a serine residue lying within the C-terminal hydrophobic motif (Ser(422) in SGK1). PDK1 (phosphoinositide-dependent kinase 1) phosphorylates the T-loop of SGK1. The identity of the hydrophobic motif kinase is unclear. Recent work has established that mTORC1 [mTOR (mammalian target of rapamycin) complex 1] phosphorylates the hydrophobic motif of S6K (S6 kinase), whereas mTORC2 (mTOR complex 2) phosphorylates the hydrophobic motif of Akt (also known as protein kinase B). In the present study we demonstrate that SGK1 hydrophobic motif phosphorylation and activity is ablated in knockout fibroblasts possessing mTORC1 activity, but lacking the mTORC2 subunits rictor (rapamycin-insensitive companion of mTOR), Sin1 (stress-activated-protein-kinase-interacting protein 1) or mLST8 (mammalian lethal with SEC13 protein 8). Furthermore, phosphorylation of NDRG1 (N-myc downstream regulated gene 1), a physiological substrate of SGK1, was also abolished in rictor-, Sin1- or mLST8-deficient fibroblasts. mTORC2 immunoprecipitated from wild-type, but not from mLST8- or rictor-knockout cells, phosphorylated SGK1 at Ser(422). Consistent with mTORC1 not regulating SGK1, immunoprecipitated mTORC1 failed to phosphorylate SGK1 at Ser(422), under conditions which it phosphorylated the hydrophobic motif of S6K. Moreover, rapamycin treatment of HEK (human embryonic kidney)-293, MCF-7 or HeLa cells suppressed phosphorylation of S6K, without affecting SGK1 phosphorylation or activation. The findings of the present study indicate that mTORC2, but not mTORC1, plays a vital role in controlling the hydrophobic motif phosphorylation and activity of SGK1. Our findings may explain why in previous studies phosphorylation of substrates, such as FOXO (forkhead box O), that could be regulated by SGK, are reduced in mTORC2-deficient cells. The results of the present study indicate that NDRG1 phosphorylation represents an excellent biomarker for mTORC2 activity.  相似文献   

9.
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a fundamental role in regulating cellular homeostasis and metabolism. In a two-part review, we examine the complex molecular events involved in the regulation and downstream effects of mTOR, as well as the pivotal role played by this kinase in many renal diseases, particularly acute kidney injury, diabetic nephropathy, and polycystic kidney diseases. Here, in the first part of the review, we provide an overview of the complex signaling events and pathways governing mTOR activity and action. mTOR is a key component of two multiprotein complexes, known as mTOR complex 1 (mTORC1) and 2 (mTORC2). Some proteins are found in both mTORC1 and mTORC2, while others are unique to one or the other complex. Activation of mTORC1 promotes cell growth (increased cellular mass or size) and cell proliferation (increased cell number). mTORC1 acts as a metabolic "sensor," ensuring that conditions are optimal for both cell growth and proliferation. Its activity is tightly regulated by the availability of amino acids, growth factors, energy stores, and oxygen. The effects of mTORC2 activation are distinct from those of mTORC1. Cellular processes modulated by mTORC2 include cell survival, cell polarity, cytoskeletal organization, and activity of the aldosterone-sensitive sodium channel. Upstream events controlling mTORC2 activity are less well understood than those controlling mTORC1, although growth factors appear to stimulate both complexes. Rapamycin and its analogs inhibit the activity of mTORC1 only, and not that of mTORC2, while the newer "catalytic" mTOR inhibitors affect both complexes.  相似文献   

10.
The proline-rich Akt substrate of 40 kDa (PRAS40) acts at the intersection of the Akt- and mammalian target of rapamycin (mTOR)-mediated signaling pathways. The protein kinase mTOR is the catalytic subunit of two distinct signaling complexes, mTOR complex 1 (mTORC1) and mTORC2, that link energy and nutrients to the regulation of cellular growth and energy metabolism. Activation of mTOR in response to nutrients and growth factors results in the phosphorylation of numerous substrates, including the phosphorylations of S6 kinase by mTORC1 and Akt by mTORC2. Alterations in Akt and mTOR activity have been linked to the progression of multiple diseases such as cancer and type 2 diabetes. Although PRAS40 was first reported as substrate for Akt, investigations toward mTOR-binding partners subsequently identified PRAS40 as both component and substrate of mTORC1. Phosphorylation of PRAS40 by Akt and by mTORC1 itself results in dissociation of PRAS40 from mTORC1 and may relieve an inhibitory constraint on mTORC1 activity. Adding to the complexity is that gene silencing studies indicate that PRAS40 is also necessary for the activity of the mTORC1 complex. This review summarizes the regulation and potential function(s) of PRAS40 in the complex Akt- and mTOR-signaling network in health and disease.  相似文献   

11.
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.  相似文献   

12.
Xin Li  Tianyan Gao 《EMBO reports》2014,15(2):191-198
Protein kinase Cζ (PKCζ) is phosphorylated at the activation loop and the turn motif (TM). However, the TM kinase and functional relevance of TM phosphorylation remain largely unknown. We demonstrate that PKCζ TM is phosphorylated directly by the mTORC2 complex, and this phosphorylation is required for maintaining PKCζ kinase activity and stability. Functionally, mTORC2 regulates the activity of Rho family of GTPases, and therefore the organization of the actin cytoskeleton, through the control of PKCζ activity. Taken together, our findings identify PKCζ as a novel substrate and downstream effector of mTORC2 signaling.  相似文献   

13.
The mammalian target of rapamycin (mTOR) is a protein kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. Both complexes phosphorylate a hydrophobic motif on downstream protein kinases, which contributes to the activation of these kinases. mTOR complex 1 (mTORC1) phosphorylates S6K1, while mTORC2 phosphorylates Akt. The TSC1-TSC2 complex is a critical negative regulator of mTORC1. However, how mTORC2 is regulated and whether the TSC1-TSC2 complex is involved are unknown. We find that mTORC2 isolated from a variety of cells lacking a functional TSC1-TSC2 complex is impaired in its kinase activity toward Akt. Importantly, the defect in mTORC2 activity in these cells can be separated from effects on mTORC1 signaling and known feedback mechanisms affecting insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Our data also suggest that the TSC1-TSC2 complex positively regulates mTORC2 in a manner independent of its GTPase-activating protein activity toward Rheb. Finally, we find that the TSC1-TSC2 complex can physically associate with mTORC2 but not mTORC1. These data demonstrate that the TSC1-TSC2 complex inhibits mTORC1 and activates mTORC2, which through different mechanisms promotes Akt activation.  相似文献   

14.
Mammalian target of rapamycin (mTOR) functions in two distinct signaling complexes, mTORC1 and mTORC2. In response to insulin and nutrients, mTORC1, consisting of mTOR, raptor (regulatory-associated protein of mTOR), and mLST8, is activated and phosphorylates eukaryotic initiation factor 4E-binding protein (4EBP) and p70 S6 kinase to promote protein synthesis and cell size. Previously we found that activation of mTOR kinase in response to insulin was associated with increased 4EBP1 binding to raptor. Here we identify prolinerich Akt substrate 40 (PRAS40) as a binding partner for mTORC1. A putative TOR signaling motif, FVMDE, is identified in PRAS40 and shown to be required for interaction with raptor. Insulin stimulation markedly decreases the level of PRAS40 bound by mTORC1. Recombinant PRAS40 inhibits mTORC1 kinase activity in vivo and in vitro, and this inhibition depends on PRAS40 association with raptor. Furthermore, decreasing PRAS40 expression by short hairpin RNA enhances 4E-BP1 binding to raptor, and recombinant PRAS40 competes with 4E-BP1 binding to raptor. We, therefore, propose that PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.  相似文献   

15.
《Autophagy》2013,9(4):553-554
mTOR is a major biological switch, coordinating an adequate response to changes in energy uptake (amino acids, glucose), growth signals (hormones, growth factors) and environmental stress. mTOR kinase is highly conserved through evolution from yeast to man and in both cases, controls autophagy and cellular translation in response to nutrient stress. mTOR kinase is the catalytic component of two distinct multiprotein complexes called mTORC1 and mTORC2. In addition to mTOR, mTORC1 contains Raptor, mLST8 and PRAS40. mTORC2 contains mTOR, Rictor, mSIN1 and Protor-1. mTORC1 activates p70S6K, which in turn phosphorylates the ribosomal protein S6 and 4E-BP1, both involved in protein translation. mTORC2 activates AKT directly by phosphorylating Serine 473. pAKT(S473) phosphorylates TSC2 (tuberin) and inactivates it, preventing its association with TSC1 (hamartin) and the inhibition of Rheb, an activator of mTOR. pAKT also phosphorylates PRAS40, releasing it from the mTORC1 complex, increasing its kinase activity. Finally, AKT regulates FOXO3 phosphorylation, sequestering it in the cytosol in an inactive state.  相似文献   

16.
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that participates in at least two distinct multiprotein complexes, mTORC1 and mTORC2 . These complexes play important roles in the regulation of cell growth, proliferation, survival, and metabolism. mTORC2 is a hydrophobic motif kinase for the cell-survival protein Akt/PKB and, here, we identify mSin1 as a component of mTORC2 but not mTORC1. mSin1 is necessary for the assembly of mTORC2 and for its capacity to phosphorylate Akt/PKB. Alternative splicing generates at least five isoforms of the mSin1 protein , three of which assemble into mTORC2 to generate three distinct mTORC2s. Even though all mTORC2s can phosphorylate Akt/PKB in vitro, insulin regulates the activity of only two of them. Thus, we propose that cells contain several mTORC2 flavors that may phosphorylate Akt/PKB in response to different signals.  相似文献   

17.
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates processes including mRNA translation, proliferation, and survival. By assembling with different cofactors, mTOR forms two complexes with distinct biological functions. Raptor-bound mTOR (mTORC1) governs cap-dependent mRNA translation, whereas mTOR, rictor, and mSin1 (mTORC2) activate the survival and proliferative kinase Akt. How the balance between the competing needs for mTORC1 and -2 is controlled in normal cells and deregulated in disease is poorly understood. Here, we show that the ubiquitin hydrolase UCH-L1 regulates the balance of mTOR signaling by disrupting mTORC1. We find that UCH-L1 impairs mTORC1 activity toward S6 kinase and 4EBP1 while increasing mTORC2 activity toward Akt. These effects are directly attributable to a dramatic rearrangement in mTOR complex assembly. UCH-L1 disrupts a complex between the DDB1-CUL4 ubiquitin ligase complex and raptor and counteracts DDB1-CUL4-mediated raptor ubiquitination. These events lead to mTORC1 dissolution and a secondary increase in mTORC2. Experiments in Uchl1-deficient and transgenic mice suggest that the balance between these pathways is important for preventing neurodegeneration and the development of malignancy. These data establish UCH-L1 as a key regulator of the dichotomy between mTORC1 and mTORC2 signaling.  相似文献   

18.
mTORC2, the mammalian target of rapamycin complex 2 is activated by upstream growth factors, and performs two major functions, phosphorylation of AKT at the serine of 473 and cell cycle-dependent organization of actin cytoskeleton. However, the mechanisms through which mTORC2 is triggered by these signals remain unclear. We demonstrated, for the first time, that inhibitor of nuclear factor κ-B kinase (IKK) interacted with rictor and regulated mTORC2 activity. Not only endogenously, but ectopically expressed IKK α and IKK β physically interacted with rictor. An in vitro binding assay revealed that rictor interacted with IKKα and IKKβ from amino acids 999 to 1397. Moreover, chemical inhibition of IKK, knockdown of IKK by small interference RNA (siRNA), or ectopic expression of kinase-dead IKK (IKK KD) repressed phosphorylation of AKT (S473) in a variety of cell lines and decreased the kinase activity of mTORC2. In NIH 3 T3 cells, inhibition of IKK also reduced phosphorylation of protein kinase α (PKCα) (S657) and resulted in disorganization of actin cytoskeleton. Interestingly, the interaction between IKKα/β and rictor was increased, while the mTOR-rictor association was attenuated by inhibition of IKK. We identified a novel signaling mechanism for the regulation of mTORC2 by IKK: IKK interacted with rictor and regulated the function of mTORC2 including phosphorylation of AKT (S473) and organization of actin cytoskeleton. Inactivated IKK interacted with rictor and competed against mTOR, which resulted in a reduced mTORC2 level and a decrease in mTORC2 activity.  相似文献   

19.
The serine/threonine protein kinase Akt is a critical regulator of cell growth and survival in response to growth factors. A key step in Akt activation is phosphorylation at Ser-473 by the mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Although Rictor is required for the stability and activity of mTORC2, little is known about functional regions or post-translational modifications within Rictor that are responsible for regulating mTORC2. Here, we demonstrate that Rictor contains two distinct central regions critical for mTORC2 function. One we refer to as the stability region because it is critical for interaction with Sin1.1 and LST8, and a second adjacent region is required for multisite acetylation. p300-mediated acetylation of Rictor increases mTORC2 activity toward Akt, whereas site-directed mutants within the acetylation region of Rictor exhibit reduced insulin-like growth factor 1 (IGF-1)-stimulated mTORC2 kinase activity. Inhibition of deacetylases, including the NAD+-dependent sirtuins, promotes Rictor acetylation and IGF-1-mediated Akt phosphorylation. These results suggest that multiple-site acetylation of Rictor signals for increased activation of mTORC2, providing a critical link between nutrient-sensitive deacetylases and mTORC2 signaling to Akt.  相似文献   

20.
The serine/threonine protein kinase Akt promotes cell survival, growth, and proliferation through phosphorylation of different downstream substrates. A key effector of Akt is the mammalian target of rapamycin (mTOR). Akt is known to stimulate mTORC1 activity through phosphorylation of tuberous sclerosis complex 2 (TSC2) and PRAS40, both negative regulators of mTOR activity. We previously reported that IκB kinase α (IKKα), a component of the kinase complex that leads to NF-κB activation, plays an important role in promoting mTORC1 activity downstream of activated Akt. Here, we demonstrate IKKα-dependent regulation of mTORC1 using multiple PTEN null cancer cell lines and an animal model with deletion of IKKα. Importantly, IKKα is shown to phosphorylate mTOR at serine 1415 in a manner dependent on Akt to promote mTORC1 activity. These results demonstrate that IKKα is an effector of Akt in promoting mTORC1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号