首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of potent and selective EP3 receptor antagonists are described. Utilizing a pharmacophore model developed for the EP3 receptor, a series of 3,4-disubstituted indoles were shown to be high affinity ligands for this target. These compounds showed high selectivity over IP, FP and other EP receptors and are potent antagonists in functional assays.  相似文献   

2.
This Letter discloses a series of 2-aminothiadiazole amides as selective EP3 receptor antagonists. SAR optimization resulted in compounds with excellent functional activity in vitro. In addition, efforts to optimize DMPK properties in the rat are discussed. These efforts have resulted in the identification of potent, selective EP3 receptor antagonists with excellent DMPK properties suitable for in vivo studies.  相似文献   

3.
A series of novel 1,7-disubstituted oxyindoles were shown to be potent and selective EP3 receptor antagonists. Variation of substitution pattern at the C-3 position of indole enhanced in vitro metabolic stability of the resulting derivatives. Series 27a–c showed >1000-fold selectivity over a panel of prostanoid receptors including IP, FP, EP1, EP2 and EP4. These agents also featured low CYP inhibition and good activity in the functional rat platelet aggregation assay.  相似文献   

4.
A series of potent and selective EP3 receptor antagonists are described. Utilizing a pharmacophore model developed for the EP3 receptor, a series of 3,4-disubstituted indoles were found to be efficient ligands for this target. These compounds showed high selectivity over IP, FP and other EP receptors. An optimized molecule 7c featured a sound profile and potency in the functional rat and human platelet aggregation assays.  相似文献   

5.
We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics.  相似文献   

6.
We have previously demonstrated that the EP1 subtype of PGE2 receptor is expressed in the differentiated compartment of normal human epidermis and is coupled to intracellular calcium mobilization. We therefore hypothesized that the EP1 receptor is coupled to keratinocyte differentiation. In in vitro studies, radioligand binding, RT-PCR, immunoblot and receptor agonist-induced second messenger studies demonstrate that the EP1 receptor is up-regulated by high cell density in human keratinocytes and this up-regulation precedes corneocyte formation. Moreover, two different EP1 receptor antagonists, SC51322 and AH6809, both inhibited corneocyte formation. SC51322 also inhibited the induction of differentiation-specific proteins, cytokeratin K10 and epidermal transglutaminase. We next examined the immunolocalization of the EP1 receptor in non-melanoma skin cancer in humans. Well-differentiated SCCs exhibited significantly greater membrane staining, while spindle cell carcinomas and BCCs had significantly decreased membrane staining compared with normal epidermis. This data supports a role for the EP1 receptor in regulating keratinocyte differentiation.  相似文献   

7.
Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate).  相似文献   

8.
Prostaglandin-E2 (PGE2) is a hormone derived from the metabolism of arachidonic acid whose functions include regulation of platelet aggregation, fever and smooth muscle contraction/relaxation. PGE2 mediates its physiological and pathophysiological effects through its binding to four G-protein coupled receptor subtypes, named EP1, EP2, EP3 and EP4. The EP3 prostanoid receptor is unique in that it has multiple isoforms generated by alternative mRNA splicing. These splice variants display differences in tissue expression, constitutive activity and regulation of signaling molecules. To date there are few reports identifying differential activities of EP3 receptor isoforms and their effects on gene regulation. We generated HEK cell lines expressing the human EP3-Ia, EP3-II or EP3-III isoforms. Using immunoblot analysis we found that nM concentrations of PGE2 strongly stimulated the phosphorylation of ERK 1/2 by the EP3-II and EP3-III isoforms; whereas, ERK 1/2 phosphorylation by the EP3-Ia isoform was minimal and only occurred at μM concentrations of PGE2. Furthermore, the mechanisms of the PGE2 mediated phosphorylation of ERK 1/2 by the EP3-II and EP3-III isoforms were different. Thus, PGE2 stimulation of ERK 1/2 phosphorylation by the EP3-III isoform involves activation of a Gαi/PI3K/PKC/Src and EGFR-dependent pathway; while for the EP3-II isoform it involves activation of a Gαi/Src and EGFR-dependent pathway. These differences result in unique differences in the regulation of reporter plasmid activity for the downstream effectors ELK1 and AP-1 by the EP3-II and EP3-III prostanoid receptor isoforms.  相似文献   

9.
We describe a medicinal chemistry approach for generating a series of 2-(1H-pyrazol-1-yl)thiazoles as EP1 receptor antagonists. To improve the physicochemical properties of compound 1, we investigated its structure–activity relationships (SAR). Optimization of this lead compound provided small compound 25 which exhibited the best EP1 receptor antagonist activity and a good SAR profile.  相似文献   

10.
11.
We disclose herein our preliminary SAR study on the identification of substituted benzothiophene derivatives as PGE2 subtype 4 receptor antagonists. A potent EP4 antagonist 6a (Ki = 1.4 nM with 10% HSA) was identified. Furthermore, we found that an acidic group was not essential for the EP4 antagonizing activity in the series and neutral replacements were identified. This opens a new direction for future EP4 antagonist design.  相似文献   

12.
A series of peri-substituted [4.3.0] bicyclic non-aromatic heterocycles have been identified as potent and selective hEP3 receptor antagonists. These molecules adopt a hair-pin conformation that overlaps with the endogenous ligand PGE2 and fits into an internally generated EP3 pharmacophore model. Optimized compounds show good metabolic stability and improved solubility over their corresponding bicyclic aromatic analogs.  相似文献   

13.
Accumulating evidence suggests that COX-2-derived prostaglandin E2 (PGE2) plays an important role in esophageal adenocarcinogenesis. Recently, PGE2 receptors (EP) have been shown to be involved in colon cancer development. Since it is not known which receptors regulate PGE2 signals in esophageal adenocarcinoma, we investigated the role of EP receptors using a human Barrett's-derived esophageal adenocarcinoma cell line (OE33). OE33 cells expressed COX-1, COX-2, EP1, EP2 and EP4 but not EP3 receptors as determined by real time RT-PCR and Western-blot. Treatment with 5-aza-dC restored expression, suggesting that hypermethylation is involved in EP3 downregulation. Endogenous PGE2 production was mainly due to COX-2, since this was significantly suppressed with COX-2 inhibitors (NS-398 and SC-58125), but not COX-1 inhibitors (SC-560). Cell proliferation (3H-thymidine uptake) was significantly inhibited by NS-398 and SC-58125, the EP1 antagonist SC-51322, AH6809 (EP1/EP2 antagonist), and the EP4 antagonist AH23848B, but was not affected by exogenous PGE2. However, treatment with the selective EP2 agonist Butaprost or 16,16-dimethylPGE2 significantly inhibited butyrate-induced apoptosis and stimulated OE33 cell migration. The effect of exogenous PGE2 on migration was attenuated when cells were first treated with EP1 and EP4 antagonists. These findings suggest a potential role for EP selective antagonists in the treatment of esophageal adenocarcinoma.  相似文献   

14.
15.
We describe the medicinal chemistry programme that led to the identification of the EP1 receptor antagonist GSK269984A (8h). GSK269984A was designed to overcome development issues encountered with previous EP1 antagonists such as GW848687X and was found to display excellent activity in preclinical models of inflammatory pain. However, upon cross species pharmacokinetic profiling, GSK269984A was predicted to have suboptimal human pharmacokinetic and was thus progressed to a human microdose study.  相似文献   

16.
The remarkably slow onset/offset of relaxation of guinea-pig isolated trachea induced by a ‘non-prostanoid’ EP2 receptor agonist, (o-(o-benzyloxy)-cinnamyl)-cinnamic acid (coded (L)-9), was investigated. (L)-9 kinetics was slightly faster on mouse trachea and considerably faster on rabbit vena cava. In each case, reversal of (L)-9 relaxation by the selective EP2 antagonist ACA-23 was rapid and similar to other EP2 agonists (e.g. ONO-AE1-259). On guinea-pig aorta, in the presence of extensive EP2 receptor blockade, (L)-9 inhibited TP agonist-induced contraction more slowly than TP antagonists of similar affinity. The slower kinetics of (L)-9 appear to correlate with greater adventitial/submucosal barriers and thicker smooth muscle layers in the tissues examined. It is proposed that interactions of (L)-9 with EP2 and TP receptors are not rate-limiting, rather diffusion to and from the centre of the muscle mass is retarded by the high lipophilicity of (L)-9 (logP=6.69; ONO-AE1-259=3.95).  相似文献   

17.
This study investigates the pronounced synergism between the weak contractile action of prostaglandin E2 (PGE2) and strong actions of phenylephrine, U-46619 and K+ on rat isolated femoral artery. The potency ranking for synergism was SC-46275 (prostanoid receptor agonist selectivity: EP3EP1)=sulprostone (EP3>EP1)>17-phenyl PGE2 (EP1>EP3). The novel EP3 antagonist L-798106 (0.2–1 μM) blocked the enhanced action of sulprostone (pA2=7.35–8.10), while the EP1 antagonist SC-51322 (1 μM) did not (pA2<6.0). Matching responses to priming agent and priming agent/sulprostone were similarly suppressed by nifedipine (300 nM) and the selective Rho-kinase inhibitors H-1152 (0.1–1 μM) and Y-27632 (1–10 μM). Our findings implicate an EP3 receptor in the prostanoid component of contractile synergism. While the synergism predominantly operates through a Ca2+ influx–Rho-kinase pathway, the EP3 receptor does not necessarily transduce via Rho-kinase.  相似文献   

18.
The vasoconstrictor effects of PGE2 and PGF are less pronounced on retinal vessels of the newborn than of the adult pig. We tested the hypothesis that the decreased vasomotor response to these prostaglandins might be due to relatively fewer receptors and/or different receptor subtypes (in the case of PGE2) on retinal vessels of the newborn animal. Binding studies using [3H]PGE2 and [3H]PGF revealed that PGE2 (EP) and PGF (FP) receptor densities in retinal microvessel membrane preparations from newborn animals were approximately 25% of those found in vessels from the adult. The Kd for PGF did not differ; however, the Kd for PGE2 was less in newborn than in adult vessels. Competition binding studies using AH 6809 (EP1 antagonist), butaprost (EP2 agonist), M&B 28,767 (EP3 agonist), and AH 23848B (EP4 antagonist) suggested that the retinal vessels of the newborn contained approximately equal number of EP1 and EP2 receptor subtypes whereas the main receptor subtype in the adult vessels was EP1. In addition, PGE2 and butaprost produced comparable increases in adenosine 3′,5′-cyclic monophosphate synthesis in newborn and adult vessels. PGE2, 17-phenyl trinor PGE2 (EP1agonist) and PGF caused a 2.5 to 3-fold greater increase in inositol1,4,5-triphosphate (IP3) formation in adult than in newborn preparations. It is concluded that fewer PGF receptors and an associated decrease in receptor-coupled IP3 formation in the retinal vessels of the newborn could lead to weaker vasoconstrictor effects of PGF on retinal vessels of the newborn than of adult pigs; fewer EP1 receptors (associated with vasoconstriction) and a relatively greater proportion of EP2 receptors (associated with vasodilation) might be responsible for the reduced retinal vasoconstrictor effects of PGE2 in the newborn.  相似文献   

19.
Novel prostaglandin E2 receptor 4 (EP4) agonists featuring a pyridone core and an allylic alcohol ω-chain were discovered. These agonists were shown to be selective over EP1, EP2 and EP3. Analogs harboring a 4-carboxylic acid phenethyl α-chain displayed improved potency over those containing an n-heptanoic acid chain. Key SAR relationships were also identified.  相似文献   

20.
Breast cancer is one of the most common and devastating malignancies among women worldwide. Recent evidence suggests that malignant progression is also driven by processes involving the sphingolipid molecule sphingosine 1-phosphate (S1P) and its binding to cognate receptor subtypes on the cell surface. To investigate the effect of this interaction on the metastatic phenotype, we used the breast cancer cell line MDA-MB-231 and the sublines 4175 and 1833 derived from lung and bone metastases in nude mice, respectively. In both metastatic cell lines expression of the S1P3 receptor was strongly upregulated compared to the parental cells and correlated with higher S1P-induced intracellular calcium ([Ca2 +]i), higher cyclooxygenase (COX)-2 and microsomal prostaglandin (PG) E2 synthase expression, and consequently with increased PGE2 synthesis. PGE2 synthesis was decreased by antagonists and siRNA against S1P3 and S1P2. Moreover, in parental MDA-MB-231 cells overexpression of S1P3 by cDNA transfection also increased PGE2 synthesis, but only after treatment with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine, indicating reversible silencing of the COX-2 promoter. Functionally, the metastatic sublines showed enhanced migration and Matrigel invasion in adapted Boyden chamber assays, which further increased by S1P stimulation. This response was abrogated by either S1P3 antagonism, COX-2 inhibition or PGE2 receptor 2 (EP2) and 4 (EP4) antagonism, but not by S1P2 antagonism. Our data demonstrate that in breast cancer cells overexpression of S1P3 and its activation by S1P has pro-inflammatory and pro-metastatic potential by inducing COX-2 expression and PGE2 signaling via EP2 and EP4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号