首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmonics - In order to investigate tunable color materials comprising metallic nanospheres, we investigated the color response of structures formed by periodic arrangements of silver...  相似文献   

2.
Surface plasmonic-enhanced light trapping from metal nanoparticles is a promising way of increasing the light absorption in the active silicon layer and, therefore, the photocurrent of the silicon solar cells. In this paper, we applied silver nanoparticles on the rear side of polycrystalline silicon thin film solar cell and systematically studied the dielectric environment effect on the absorption and short-circuit current density (Jsc) of the device. Three different dielectric layers, magnesium fluoride (MgF2, n?=?1.4), tantalum pentoxide (Ta2O5, n?=?2.2), and titanium dioxide (TiO2, n?=?2.6), were investigated. Experimentally, we found that higher refractive index dielectric coatings results in a redshift of the main plasmonic extinction peak and higher modes were excited within the spectral region that is of interest in our thin film solar cell application. The optical characterization shows that nanoparticles coated with highest refractive index dielectric TiO2 provides highest absorption enhancement 75.6 %; however, from the external quantum efficiency characterization, highest short-circuit current density Jsc enhancement of 45.8 % was achieved by coating the nanoparticles with lower refractive index MgF2. We also further optimize the thickness of MgF2 and a final 50.2 % Jsc enhancement was achieved with a 210-nm MgF2 coating and a back reflector.  相似文献   

3.

In this report, Ag nanoparticles were fabricated using the single-step glancing angle deposition (SS-GLAD) technique upon In2O3/TiO2 thin film. Afterward, a detailed analysis was done for the two samples such as In2O3/TiO2 thin film and In2O3/TiO2 thin film/Ag nanoparticles, to inspect the field emission scanning electron microscopy (FESEM), energy-dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), ultraviolet (UV) spectroscopy, and electrical properties. The reduction in bandgap energy for the samples of In2O3/TiO2 thin film/Ag nanoparticles (~4.16 eV) in comparison with the In2O3/TiO2 thin film (~4.28 eV) was due to trapped e–h recombination at the oxygen vacancies and electron transmission of Ag to the conduction band of the In2O3/TiO2 thin films. Moreover, under irradiation of photons Ag nanoparticles generated inorganic Ag–O compound attributable to the localized surface plasmon resonance (LSPR). Also, a?~90% high transmittance,?~60% and?~25% low reflectance in UV and visible region, fill factor (FF) of 53%, as well as power conversion efficiency (PCE) of 15.12% was observed for In2O3/TiO2 thin film/Ag nanoparticles than the In2O3/TiO2 thin film. Therefore, the use of Ag nanoparticles textured In2O3/TiO2 thin film–based device is a promising approach for the forthcoming photovoltaic applications.

  相似文献   

4.

Thin films with tunable optical properties from yellow to metallic were prepared from a monolayer coating of silver nanoparticles (AgNP) onto a polyelectrolyte multilayer (PEM) thin film. The AgNP were synthesized using various concentrations of stabilizing polyelectrolytes leading to a competitive adsorption concept in which AgNP compete with excess polyelectrolytes to coat the cationic PEM top layer. The AgNP were synthesized by chemical reduction of Ag salts using poly(styrene 4-sulfonic acid-co-maleic acid) (PSS-co-MA) as stabilizing agent to produce nanoparticles coated with both a strong acid (sulfonic) and a weak acid (carboxylic) moiety. Although all the nanoparticle solutions displayed a characteristic bright yellow due to the localized surface plasmon band around 420 nm, the monolayer films of nanoparticles obtained after dipping displayed striking different optical properties. When using a high PSS-co-MA content in the solution, a pale-yellow film was obtained which color shifted to orange and metallic when the capping concentration was decreased from 0.25 to 0.001 mM. The optical properties of the AgNP film could be further changed by galvanic replacement of the Ag with gold ions to produce a gold monolayer. These results are interesting to produce surface with tunable catalytic properties, tunable optical properties, or to be used as primer for the metallization of polymeric surfaces.

  相似文献   

5.
Plasmonics - Co-TiO2 nanoparticle thin films were synthesized by sol-gel method. The structural properties of the synthesized sample were studied using FTIR, XRD, and TEM. XRD confirmed the...  相似文献   

6.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

7.

We report a simple and fast microwave-assisted method to grow silver nanoparticle films with tunable plasmon resonance band. Microwaving time controls nucleation and growth as well as particle agglomeration, cluster formation, particle morphology, and the plasmonic properties. Films produced with times shorter than 30 s presented a single well-defined plasmon resonance band (~ 400 nm), whereas films produced with times longer than 40 s presented higher wavelength resonances modes (> 500 nm). Plasmon band position and intensity can be easily tuned by controlling microwaving time and power. SEM and AFM images suggested the growth of asymmetrical silver nanoparticles. Simulated extinction spectra considering particles as spheres, hemispheres, and spherical caps were performed. The films were employed to enhance the sensitivity of ionizing radiation detectors assessed by optically stimulated luminescence (OSL) via plasmon-enhanced luminescence. By tuning the plasmon resonance band to overlap with the OSL stimulation (530 nm), luminescence enhancements of greater than 100-fold were obtained, demonstrating the importance of tuning the plasmon resonance band to maximize the OSL intensity and detector sensitivity. This versatile method to produce silver nanoparticle films with tunable plasmonic properties is a promising platform for developing small-sized radiation detectors and advanced sensing technologies.

Graphical Abstract

  相似文献   

8.
9.
The absorptance spectra of gold and silver nanoparticle (NP) aqueous dispersions were measured by UV–visible spectroscopy and computed numerically by finite element method. Both NPs were functionalized by l-cysteine amino acid (Cys) in order to develop aggregate-based localized surface plasmon resonance biosensors. Absorptance spectra measured at an analogous pH value of ~4.9 were compared, where Au-Cys conjugates have moderately split spectra with two commensurate maxima, while Ag-Cys conjugates exhibit the most pronounced secondary peak according to the highest degree of aggregation. The purpose of our theoretical study was to determine the simplest linear chain-like and wavy aggregate geometries, which result in maxima matching the measured peaks. The aggregates were characterized by N number and d diameter of NPs, g gap between the NPs, and t thickness of the l-cysteine covering. By tuning the angle of incidence and E -field oscillation direction in p-polarized light with respect to the aggregates, the contribution of longitudinal and transversal modes was varied. The comparison of measurements and computations revealed that spectra measured on bioconjugate dispersions include effects of numerous aggregates with various geometries, illuminated from different directions and are influenced by inter-aggregate coupling. Inspecting the normalized E -field distribution surrounding the aggregates, it was shown that fundamentally different multipolar modes can be identified at primary and secondary absorptance maxima, due to coupled plasmonic resonances on NPs.  相似文献   

10.
We report the deposition of highly uniform thin silver films on plastic materials using a wet-chemistry method, suitable for surface plasmon-coupled emission (SPCE). This approach is reproducible for diverse low-cost applications and versatile to generate silver surfaces on various plastics substrates. An oxygen plasma pretreatment of the plastic provides for rapid silvering, leading to a 47-nm-thick continuous film for SPCE applications. The surface smoothness and thickness of the films have been estimated using atomic force microscope. The higher refractive index of polycarbonate, resulted in an SPCE angle of θ F = 470 for Rhodamine B, compared to glass (θ F = 500). The current study presents details on film deposition conditions, appropriate choice of index matching fluids, substrates, and light sources that play a vital role to augment SPCE emission intensity.  相似文献   

11.
This work presents an experimental analysis on the tunable localized surface plasmon resonance (LSPR), obtained from deposited silver (Ag) thin films of various thicknesses. Silver thin films are prepared using electron beam deposition and undergo an annealing process at different temperatures to produce distinctive sizes of Ag metal nanoparticles (MNPs). The variability of structure sizes and shapes provides an effective means of tuning the position of the LSPR within a wide wavelength range. This paper provides an estimation of LSPR over a broad wavelength range by a process in which the resonance spectra of silver nanoparticles differing in thickness are simulated using an adaptive neuro-fuzzy inference system (ANFIS) method. The ANFIS methodology allows for estimation of sizes of granular structures formed on top of a wafer at certain temperatures, whereupon these intelligent estimators are implemented using MATLAB and their subsequent performances are investigated. The results presented in this paper show the effectiveness of the method of simulation.  相似文献   

12.
Plasmonics - Noble metal nanostructures are object of great interest due to their unique optical and electronic properties exploited in nanotechnology, medicine, biochemistry, and surface-enhanced...  相似文献   

13.
Plasmonics - In this work, we have performed a systematic investigation of the plasmon near-field effect on photoluminescence (PL) behavior of the annealed self-assembled gold nanostructured films....  相似文献   

14.
Composite films of hydroxypropyl methylcellulose and zein nanoparticles (ZNP) were prepared to create a biopolymer-based film with reduced vapor permeability and potential for active-packaging applications. Microscopy verified the dispersion of ZNP with diameter of ~100 nm throughout the width and depth of the films, with ZNP forming sub-micrometer clusters of nanoparticles at loaded volume fractions >0.15. Incorporation of non-hygroscopic ZNP increased film-water contact angles to >70 degrees and decreased water vapor permeability of films by ~10–30%. Extensional measurements of films described an increase in tensile strength from 27 kPa to 49 kPA, a decreased capacity to elongate, and an initial increase followed by gradual decrease in Young’s moduli with increasing ZNP fractions. Decreased elasticity was observed within microscale regions of the films at higher ZNP volume fractions using dynamic force spectroscopy, and the trends were strongly correlated with bulk Young’s moduli of the composite films. A mathematical model rationalized the initially increased and subsequently decreased Young’s modulus by the change in ZNP dispersion/clustering combined with a collapse of the interfacial zone surrounding ZNP.  相似文献   

15.

Silver nanoparticle (AgNP) has wide-spread applications in photovoltaic cell, biological sensors, biomedical devices, surface enhanced Raman scattering (SERS) etc. which are intricately dependent on AgNP shape, size, concentration and aggregation states. Here, the particle size, shape and aggregation dependent dipole and quadrupole surface plasmon resonances are spectroscopically investigated by preparing AgNPs (diameter 10–110nm) using silver nitrate (AgNO3) and sodium borohydride (NaBH4 as reducing agent) in aqueous environment at 0 C. The AgNP UV-Visible spectra showing plasmon-induced dipole and quadrupole modes are corroborated by the theoretical framework of Mie-Gans model and discrete dipole scattering model DDSCAT and different particle sizes, shapes and possible aggregation or clusterization are predicted. All the samples show presence of spherical and nonspherical distribution of AgNP. However, the concentration of nonspherical particle is more for higher concentration of reducing agent as is evidenced by the appearance of quadrapole absorption maxima. The minimum particle size is found at a particular ratio of concentration of AgNO3 and NaBH4. The day variation of AgNP kinetics also signalled the onset of quadrupole deformation of clusters.

  相似文献   

16.
17.
Preparation of an intelligent drug delivery system which releases the drug in response to the environmental stimuli in a controlled manner is one of the interesting subjects and it is the purpose of this study. Films composed of Eudragit RS and different percentages of plasticizers (0%, 5%, 10%, or 20% w/w based on polymer weight), poly ethylene glycol 400 or triethyl citrate (TEC), were prepared by solvent casting method. Glass transition temperatures of the films were determined by differential scanning colorimetery. Water uptake and drug permeation through membranes with the glass transition temperature (Tg) close to the body temperature were investigated. Propranolol hydrochloride and acetaminophen were used as model drugs in permeation studies. The results showed that Eudragit RS films with 20% of either plasticizer showed thermo-responsivity around body temperature. The water uptake of the films and the permeation rates of both drugs increased at temperatures above the Tg of the films. The films containing TEC was found to be more appropriate thermo-responsive membrane due to a higher sensitivity to temperature and more ability to control drug release.  相似文献   

18.
MicroRNA是一类存在于动植物体内的重要的、序列高度同源的基因表达转录后调节因子,近来对microRNA不同表达模式和调节作用的研究要求能够快速、灵敏、特异地检测痕量microRNA的方法.利用纳米金银染增强技术建立了一种简单快速的microRNA定量方法,以纳米金标记的寡核苷酸分子作为信号探针,以生物素标记寡核苷酸分子作为捕获探针,经链霉亲和素-生物素作用将靶序列捕获在固相载体酶标孔上,继而通过纳米金催化的银染增强放大效应产生高灵敏的识别信号,记录其吸光度值从而实现microRNA分子的定量.用该方法检测小鼠肝脏,脑组织中miR-122a和miR-128各自的含量及合成miR-122a,结果表明其在良好的线形范围(10 pmol/L~10 fmol/L)内最低检测限为10 fmol/L,能够特异地区别单核苷酸错配的靶microRNA.  相似文献   

19.
Ag nanoparticles (NPs) embedded in a zirconium oxide matrix in the form of Ag:ZrO2 nanocomposite (NC) thin films were synthesized by using the sol–gel technique followed by thermal annealing. With the varying of the concentration of Ag precursor and annealing conditions, average sizes (diameters) of Ag nanoparticles (NPs) in the nanocomposite film have been varied from 7 to 20 nm. UV–VIS absorption studies reveal the surface plasmon resonance (SPR)-induced absorption in the visible region, and the SPR peak intensity increases with the increasing of the Ag precursor as well as with the annealing duration. A red shift in SPR peak position with the increase in the Ag precursor concentration confirms the growth of Ag NPs. Surface topographies of these NC films showed that deposited films are dense, uniform, and intact during the variation in annealing conditions. The magnitude and sign of absorptive nonlinearities were measured near the SPR of the Ag NPs with an open-aperture z-scan technique using a nanosecond-pulsed laser. Saturable optical absorption in NC films was identified having saturation intensities in the order of 1012 W/m2. Such values of saturation intensities with the possibility of size-dependent tuning could enable these NC films to be used in nanophotonic applications.  相似文献   

20.
Described herein is the efficient synthesis and evaluation of bioactive arginine-glycine-aspartic acid (RGD) functionalized polynorbornene-based materials for cell adhesion and spreading. Polynorbornenes containing either linear or cyclic RGD peptides were synthesized by ring-opening metathesis polymerization (ROMP) using the well-defined ruthenium initiator [(H(2)IMes)(pyr)(2)(Cl)(2)Ru═CHPh]. The random copolymerization of three separate norbornene monomers allowed for the incorporation of water-soluble polyethylene glycol (PEG) moieties, RGD cell recognition motifs, and primary amines for postpolymerization cross-linking. Following polymer synthesis, thin-film hydrogels were formed by cross-linking with bis(sulfosuccinimidyl) suberate (BS(3)), and the ability of these materials to support human umbilical vein endothelial cell (HUVEC) adhesion and spreading was evaluated and quantified. When compared to control polymers containing either no peptide or a scrambled RDG peptide, polymers with linear or cyclic RGD at varying concentrations displayed excellent cell adhesive properties in both serum-supplemented and serum-free media. Polymers with cyclic RGD side chains maintained cell adhesion and exhibited comparable integrin binding at a 100-fold lower concentration than those carrying linear RGD peptides. The precise control of monomer incorporation enabled by ROMP allows for quantification of the impact of RGD structure and concentration on cell adhesion and spreading. The results presented here will serve to guide future efforts for the design of RGD functionalized materials with applications in surgery, tissue engineering, and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号