首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
麦秸秆纤维作为一种重要生物质资源已被广泛应用于热塑性复合材料中。纤维在复合材料中的分散性是影响复合材料力学性能的重要因素之一,而目前对其定量化的描述和分析方法仍存在一定不足。本研究基于实验获得的纤维尺寸的统计分布规律,利用随机生成算法模拟纤维在复合材料中的分布;构建描述纤维分散性的指标:分散度,单个纤维数和接触纤维数;统计分析纤维含量、纤维大小对分散性指标影响。结果表明单个纤维数随纤维含量增加而增加,但其增量随纤维含量的增加而降低,降低规律符合三次函数。纤维接触数随纤维含量增加,增加规律符合二次函数,亦符合理论估计。纤维大小影响单个纤维数和接触纤维数的增加幅度,但不影响单个纤维数的百分比。分散度随纤维含量的增加呈线性下降规律。纤维分散性的定量化描述为进一步的复合材料性能分析和建模提供了量化指标。  相似文献   

2.
Altering adenovirus vector (Ad vector) targeting is an important goal for a variety of gene therapy applications and involves eliminating or reducing the normal tropism of a vector and retargeting through a distinct receptor-ligand pathway. The first step of Ad vector infection is high-affinity binding to a target cellular receptor. For the majority of adenoviruses and Ad vectors, the fiber capsid protein serves this purpose, binding to the coxsackievirus and adenovirus receptor (CAR) present on a variety of cell types. In this study we have explored a novel approach to altering Ad type 5 (Ad5) vector targeting based on serotypic differences in fiber function. The subgroup B viruses bind to an unidentified receptor that is distinct from CAR. The subgroup F viruses are the only adenoviruses that express two distinct terminal exons encoding fiber open reading frames. We have constructed chimeric fiber adenoviruses that utilize the tandem fiber arrangement of the subgroup F genome configuration. By taking advantage of serotypic differences in fiber expression, fiber shaft length, and fiber binding efficiency, we have developed a tandem fiber vector that has low binding efficiency for the known fiber binding sites, does not rely on an Ad5-based fiber, and can be grown to high titer using conventional cell lines. Importantly, when characterizing these vectors in vivo, we find the subgroup B system and our optimal tandem fiber system demonstrate reduced liver transduction by over 2 logs compared to an Ad5 fiber vector. These attributes make the tandem fiber vector a useful alternative to conventional strategies for fiber manipulation of adenovirus vectors.  相似文献   

3.
The dependence of local left ventricular (LV) mechanics on myocardial muscle fiber orientation was investigated using a finite element model. In the model we have considered anisotropy of the active and passive components of myocardial tissue, dependence of active stress on time, strain and strain rate, activation sequence of the LV wall and aortic afterload. Muscle fiber orientation in the LV wall is quantified by the helix fiber angle, defined as the angle between the muscle fiber direction and the local circumferential direction. In a first simulation, a transmural variation of the helix fiber angle from +60 degrees at the endocardium through 0 degrees in the midwall layers to -60 degrees at the epicardium was assumed. In this simulation, at the equatorial level maximum active muscle fiber stress was found to vary from about 110 kPa in the subendocardial layers through about 30 kPa in the midwall layers to about 40 kPa in the subepicardial layers. Next, in a series of simulations, muscle fiber orientation was iteratively adapted until the spatial distribution of active muscle fiber stress was fairly homogeneous. Using a transmural course of the helix fiber angle of +60 degrees at the endocardium, +15 degrees in the midwall layers and -60 degrees at the epicardium, at the equatorial level maximum active muscle fiber stress varied from 52 kPa to 55 kPa, indicating a remarkable reduction of the stress range. Moreover, the change of muscle fiber strain with time was more similar in different parts of the LV wall than in the first simulation. It is concluded that (1) the distribution of active muscle fiber stress and muscle fiber strain across the LV wall is very sensitive to the transmural distribution of the helix fiber angle and (2) a physiological transmural distribution of the helix fiber angle can be found, at which active muscle fiber stress and muscle fiber strain are distributed approximately homogeneously across the LV wall.  相似文献   

4.
The vertebrate lens is a transparent, spheroidal tissue, located in the anterior region of the eye that focuses visual images on the retina. During development, surface ectoderm associated with the neural retina invaginates to form the lens vesicle. Cells in the posterior half of the lens vesicle differentiate into primary lens fiber cells, which form the lens fiber core, while cells in the anterior half maintain a proliferative state as a monolayer lens epithelium. After formation of the primary fiber core, lens epithelial cells start to differentiate into lens fiber cells at the interface between the lens epithelium and the primary lens fiber core, which is called the equator. Differentiating lens fiber cells elongate and cover the old lens fiber core, resulting in growth of the lens during development. Thus, lens fiber differentiation is spatially regulated and the equator functions as a platform that regulates the switch from cell proliferation to cell differentiation. Since the 1970s, the mechanism underlying lens fiber cell differentiation has been intensively studied, and several regulatory factors that regulate lens fiber cell differentiation have been identified. In this review, we focus on the lens equator, where these regulatory factors crosstalk and cooperate to regulate lens fiber differentiation. Normally, lens epithelial cells must pass through the equator to start lens fiber differentiation. However, there are reports that when the lens epithelium structure is collapsed, lens fiber cell differentiation occurs without passing the equator. We also discuss a possible mechanism that represses lens fiber cell differentiation in lens epithelium.  相似文献   

5.
6.
棉纤维由棉胚珠表皮细胞分化生长而成,是研究细胞分化、细胞伸长等机理的良好材料。为了更好地研究它的分化和发育,人们建立了多种实验系统:离体胚珠培养系统、胚珠来源的单细胞悬浮培养系统、胚珠愈伤组织细胞来源的细胞悬浮培养系统,并对这些实验系统的特点对纤维细胞分化和生长,如培养基的配方、激素配比、pH值、抑制剂或促进剂的影响等进行了较为系统的研究。发现棉纤维的发育  相似文献   

7.
Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.  相似文献   

8.
9.
Inspired by the classic theory, we suggest that the performance of a D-shaped fiber optical surface plasmon resonance (SPR) sensor can be improved by manipulating the fiber core mode. To demonstrate this, we propose a novel fiber SPR sensor based on a hollow core photonic crystal fiber with liquid mixture filled in the core. The fiber sensor design involves a side-polished fiber with gold film deposited on the polished plane and liquid filling. Numerical simulation results suggest that by tuning the refractive index of the liquid mixture, the predicted sensitivity will be over 6,430 nm/refractive index unit for an aqueous environment, which is competitive for fiber chemical sensing. This optimization method may lead to an ultrahigh sensitivityfiber optical biosensor.  相似文献   

10.
我国棉花抗枯黄萎病品种纤维品质遗传改良评价   总被引:6,自引:1,他引:5  
对我国108个抗枯、黄萎病骨干品种的纤维品质进行了分析,整体表现纤维较长,27mm以下的品种较少;比强度平均值较低,但也有少数高强力品种;马克隆值较大,纤维较粗.20世纪60-90年代抗病育种对纤维品质未明显改进,纤维长度、比强度、马克隆值平均值均无显著增长;但纤维长度类型更加丰富,纤维长度最大值有所增加,最高强力品种的比强度值逐渐提高,90年代品种中有较细纤维类型.从中筛选出纤维长度在33mm以上,比强度在33.2cN/tex以上,纤维整齐度在87.1%以上,马克隆值在3.8~4.3之间的品种各10个,筛选出纤维品质指标综合优良的品种9个.  相似文献   

11.
The adenovirus fiber protein is responsible for attachment of the virion to cell surface receptors. The identity of the cellular receptor which mediates binding is unknown, although there is evidence suggesting that two distinct adenovirus receptors interact with the group C (adenovirus type 5 [Ad5]) and the group B (Ad3) adenoviruses. In order to define the determinants of adenovirus receptor specificity, we have carried out a series of competition binding experiments using recombinant native fiber polypeptides from Ad5 and Ad3 and chimeric fiber proteins in which the head domains of Ad5 and Ad3 were exchanged. Specific binding of fiber to HeLa cell receptors was assessed with radiolabeled protein synthesized in vitro, and by competition analysis with baculovirus-expressed fiber protein. Fiber produced in vitro was found as both monomer and trimer, but only the assembled trimers had receptor binding activity. Competition data support the conclusion that Ad5 and Ad3 interact with different cellular receptors. The Ad5 receptor distribution on several cell lines was assessed with a fiber binding flow cytometric assay. HeLa cells were found to express high levels of receptor, while CHO and human diploid fibroblasts did not. A chimeric fiber containing the Ad5 fiber head domain blocked the binding of Ad5 fiber but not Ad3 fiber. Similarly, a chimeric fiber containing the Ad3 fiber head blocked the binding of labeled Ad3 fiber but not Ad5 fiber. In addition, the isolated Ad3 fiber head domain competed effectively with labeled Ad3 fiber for binding to HeLa cell receptors. These results demonstrate that the determinants of receptor binding are located in the head domain of the fiber and that the isolated head domain is capable of trimerization and binding to cellular receptors. Our results also show that it is possible to change the receptor specificity of the fiber protein by manipulation of sequences contained in the head domain. Modification or replacement of the fiber head domain with novel ligands may permit adenovirus vectors with new receptor specificities which could be useful for targeted gene delivery in vivo to be engineered.  相似文献   

12.
Native cotton fiber and in vitro cotton fiber that was induced from cotton ovule callus by suspension culture were observed using transmission electron microscope and scanning electron microscope. The ovule surface on the first day preanthesis was quite smooth. On the anthesis, it had a lot of protuberances. Two kinds of callus, smooth and rough were found. The microfibrils of callus was vertical to the cell long axis and they changed their orientations with the development of the in vitro cotton fiber: from the vertical to shallow spiral and then to parallel to the cell long axis. So was the native cotton fiber. It suggests that in vitro cotton fiber and native cotton fiber have similar development process. Compared with the ovule surface cell, most callus cells had smaller nuclear. During the development of the fiber, the plasm of native cotton fiber was denser than that of in vitro fiber, and it has more cellular organ than in vitro fiber. The cell wall of native cotton fiber was thicker and denser than that of the in vitro cotton fiber too. It suggests that the physiological activity of in vitro cotton fiber was less active than native cotton fiber.  相似文献   

13.
目的:研究担载血管内皮生长因子(VEGF)的乳液法电纺纤维膜的亲水性能、外观形态和机械性能,纤维膜中VEGF的包封率和体外释放动力学,为评价其能否应用于血管再生领域的研究奠定基础。方法:将VEGF水溶液通过W/O乳液法制备成缓释VEGF的生物可降解的丙交酯-乙交酯共聚物(PLGA)静电纺丝纤维膜,对该纤维膜的接触角、外观形态、机械性能进行表征,Elisa法测定该纤维膜的体外14天的释放行为,分别观察纤维膜释放0天、7天、14天后的电镜图。结果:加入VEGF后,纤维膜的接触角由140.0°减小到136.1°,亲水性增强,具有类似细胞外基质(ECMs)网状结构和良好的力学性能,纤维膜第1天的突释不超过载药量的50%,电镜图下显示纤维膜释放1周时纤维发生断裂。结论:通过乳液法制备的担载VEGF的电纺纤维膜具有良好的物理性能,能够持续缓释VEGF,可作为血管再生的组织工程支架进行深入研究。  相似文献   

14.
Effect of feeding coconut and blackgram fiber isolated as neutral detergent fiber (NDF) on the levels of lipids and lipid peroxides was studied in rats given a high fat diet. Concentration of cholesterol, free falty acid and phospholipids showed significant decrease in the serum, liver aorta and intestine of coconut and blackgram fiber groups. Concentration of malondialdehyde (MDA) and conjugated dienes was significantly decreased in liver and intestine of both fiber groups, while hydroperoxides showed significant increase in liver and heart of both the fiber groups. SOD and catalase activity was found to be increased in liver, intestine, heart proximal colon and distal colon of both the fiber groups. Serum ceruloplasmin levels showed a slight increase in animals fed coconut and blackgram fiber groups. Glutathione levels in liver, intestine proximal colon, distal colon and heart also showed a significant decrease in the animals of both the fiber groups.  相似文献   

15.
Gene-rich islands for fiber development in the cotton genome   总被引:1,自引:0,他引:1  
Xu Z  Kohel RJ  Song G  Cho J  Alabady M  Yu J  Koo P  Chu J  Yu S  Wilkins TA  Zhu Y  Yu JZ 《Genomics》2008,92(3):173-183
  相似文献   

16.
IntroductionSmall fiber neuropathy might be a part of typical mixed small and large fiber neuropathy, or a distinct entity, affecting exclusively small nerve fibers.ObjectivesExplore the utility of small nerve fiber testing in patients with clinical presentation suggesting small fiber neuropathy, with and without evidence for concomitant large fiber neuropathy.MethodsPatients attending the neuromuscular clinic from 2012 to 2015 with a clinical presentation suggesting small nerve fiber impairment, who had Laser Doppler flare imaging (LDIFlare) and quantitative thermal testing (QTT) were evaluated for this study. Patients with clinical or electrophysiological evidence for concomitant large fiber neuropathy were not excluded.ResultsThe sensitivities of LDIFlare, cooling and heat threshold testing were 64%, 36%, and 0% respectively for clinically highly suggestive small fiber neuropathy, 64%, 56%, and 19% respectively for mixed fiber neuropathy, and 86%, 79%, and 29% respectively for diabetic mixed fiber neuropathy.DiscussionLDIFlare and cooling thresholds testing are non-invasive small nerve fiber testing modalities, with moderate performance in patients with small and mixed fiber neuropathy, and excellent performance in diabetic mixed fiber neuropathy.  相似文献   

17.
Capillary density is important as a determinant for total oxygen transport to tissue. Because both capillary morphology and fiber composition vary considerably from muscle to muscle, measurement of capillary morphology and fiber composition vary considerably from muscle to muscle, measurement of capillary density alone cannot provide the detailed information necessary for analyzing physical phenomena. In this report we consider the capillary:fiber ratio, fiber types, fiber diameters, and fiber composition as components of a unit to express capillary density. We have applied the hexagonal fiber array model to calculate capillary density in cat and dog striated muscle and compared this with experimental data in the literature. The results indicate that this model may be useful for predicting capillary densities from simple biopsy procedures.  相似文献   

18.
The adenovirus (Ad) fiber protein mediates Ad binding to the coxsackievirus and Ad receptor (CAR) and is thus a major determinant of viral tropism. The fiber contains three domains: an N-terminal tail that anchors the fiber to the viral capsid, a central shaft region of variable length and flexibility, and a C-terminal knob domain that binds to cell receptors. Ad type 37 (Ad37), a subgroup D virus associated with severe ocular infections, is unable to use CAR efficiently to infect host cells, despite containing a CAR binding site in its fiber knob. We hypothesized that the relatively short, inflexible Ad37 fiber protein restricts interactions with CAR at the cell surface. To test this hypothesis, we analyzed the infectivity and binding of recombinant Ad particles containing modified Ad37 or Ad5 fiber proteins. Ad5 particles equipped with a truncated Ad5 fiber or with a chimeric fiber protein comprised of the Ad5 knob fused to the short, rigid Ad37 shaft domain had significantly reduced infectivity and attachment. In contrast, placing the Ad37 knob onto the long, flexible Ad5 shaft allowed CAR-dependent virus infection and cell attachment, demonstrating the importance of the shaft domain in receptor usage. Increasing fiber rigidity by substituting the predicted flexibility modules in the Ad5 shaft with the corresponding regions of the rigid Ad37 fiber dramatically reduced both virus infection and cell attachment. Cryoelectron microscopy (cryo-EM) single-particle analysis demonstrated the increased rigidity of this chimeric fiber. These studies demonstrate that both length and flexibility of the fiber shaft regulate CAR interaction and provide a molecular explanation for the use of alternative receptors by subgroup D Ad with ocular tropism. We present a molecular model for Ad-CAR interactions at the cell surface that explains the significance of fiber flexibility in cell attachment.  相似文献   

19.
Dye Transfer Between Cells of the Lens   总被引:1,自引:0,他引:1  
Dye transfer between lens fiber cells and between lens epithelial cells and underlying fiber cells was studied using a wide dynamic range-cooled CCD camera, H2O immersion objectives and image analysis techniques. Each lens was decapsulated by a new technique which leaves the epithelial cells adherent to the lens fiber mass. Lucifer Yellow CH was injected into either single epithelial cells or single fiber cells using the standard whole cell configuration of the patch voltage clamp technique. The results demonstrate extensive dye communication between fiber cells at the lens posterior surface, anterior surface, and equatorial surface. Dye transfer between deep fiber cells was also observed. Dye transfer between ≈10% of epithelial cells and their underlying fiber cells was apparent when care was taken to yield wide dynamic range images. This was required because the relatively high concentration of dye in the epithelial cell masks the presence of much lower dye concentrations in the underlying fiber cell. A mathematical model which includes dye concentration, time, and spatial spread suggests that those epithelial cells that are coupled to an underlying fiber cell are about as well dye coupled as the epithelial cells themselves. The relatively low dye concentration in a fiber cell is due to its larger volume and diffusion of the dye along the axis of the fiber away from the fiber/epithelial junction. Received: 14 September 1995/Revised: 13 November 1995  相似文献   

20.
In this work, palm and coir fiber reinforced polypropylene bio-composites were manufactured using a single extruder and injection molding machine. Raw palm and coir were chemically treated with benzene diazonium salt to increase their compatibility with the polypropylene matrix. Both raw and treated palm and coir fiber at five level of fiber loading (15, 20, 25, 30 and 35 wt.%) was utilized during composite manufacturing. Microstructural analysis and mechanical tests were conducted. Comparison has been made between the properties of the palm and coir fiber composites. Treated fiber reinforced specimens yielded better mechanical properties compared to the raw composites, while coir fiber composites had better mechanical properties than palm fiber ones. Based on fiber loading, 30% fiber reinforced composites had the optimum set of mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号