首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With the aim to find out the structural features for the MAO inhibitory activity and selectivity, in the present communication we report the synthesis and pharmacological evaluation of a new series of bromo-6-methyl-3-phenylcoumarin derivatives (with bromo atom in both different benzene rings of the skeleton) with and without different number of methoxy substituent at the 3-phenyl ring. The methoxy substituents were introduced, in this new scaffold, in the meta and/or para positions of the 3-phenyl ring. The synthesized compounds 37 were evaluated as MAO-A and B inhibitors using R-(?)-deprenyl (selegiline) and iproniazide as reference inhibitors, showing, most of them, MAO-B inhibitory activities in the low nanomolar range. Compounds 4 (IC50 = 11.05 nM), 5 (IC50 = 3.23 nM) and 6 (IC50 = 7.12 nM) show higher activity than selegiline (IC50 = 19.60 nM) and higher MAO-B selectivity, with more than 9050-fold, 30,960-fold and 14,045-fold inhibition levels, with respect to the MAO-A isoform.  相似文献   

2.
6-Methyl-3-phenylcoumarins 3–6 were designed, synthesized and evaluated as monoamine oxidase A and B (MAO-A and MAO-B) inhibitors. The synthesis of these new compounds (resveratrol–coumarin hybrids) was carried out with good yield by a Perkin reaction, from the 5-methylsalicylaldehyde and the corresponding phenylacetic acid. They show high selectivity to the MAO-B isoenzyme, with IC50 values in the nanomolar range. Compound 5 is the most active compound and is several times more potent and selective than the reference compound, R-(?)-deprenyl.  相似文献   

3.
Monoamine oxidase (MAO) is an enzyme, present in mammals in two isoforms MAO-A and MAO-B. These isoforms have a crucial role in neurotransmitters metabolism, representing an attractive drug target in the therapy of neurodegenerative diseases (MAO-B) and depression (MAO-A). In this context, our work has been focused on the discovery of new chemical entities (NCEs) for MAO inhibition, based on the development of chromone carboxamides. Chromone derivatives with a carboxamide function located in position 2- and 3- of the benzo-γ-pyrone core, (compounds 2-6 and 8-12) were synthesized, with moderate/good yields, by a one-pot condensation reaction using phosphonium salts as coupling reagents. The synthetic compounds were screened towards human MAO isoforms (hMAO) to evaluate their potency and selectivity. The chromone-3-carboxamides show high selectivity to hMAO-B, with compounds 9 and 12 displaying IC50 values at nanomolar range.  相似文献   

4.
A series of 3-aryl-4-hydroxycoumarin derivatives was synthesized with the aim to find out the structural features for the MAO inhibitory activity and selectivity. Methoxy and/or chloro substituents were introduced in the 3-phenyl ring, whereas the position 6 in the coumarin moiety was not substituted or substituted with a methyl group or a chloro atom due to their different electronic, steric and/or lipophilic properties. Most of the synthesized compounds presented MAO-B inhibitory activity. The presence of methoxy and chloro groups, respectively in the para and meta positions of the 3-phenyl ring, have an important influence on the inhibitory activity. Moreover, the presence of a chloro atom in the six position of the moiety (compound 7) improved the inhibitor activity as well as its selectivity against MAO-B compared with iproniazide, used as reference compound. Docking experiments were carried out to understand which are the most energetically preferred orientations adopted by compounds 5, 6 and 7 inside the MAO-B binding pocket.  相似文献   

5.
Cdc7 kinase plays a critical role in the regulation of DNA replication in eukaryotic cells and has been proposed as a target for cancer therapy. We have identified a class of Cdc7/Dbf4 inhibitors with a pyrido-thieno-pyrimidine core structure. Synthesis of a focused pyrido-thieno-pyrimidine library yielded potent and selective Cdc7 inhibitors with antiproliferative activity against cancer cells in vitro. Their synthesis and SAR data are presented herein.  相似文献   

6.
Heteroarylalanine derivatives 4 were designed as potential inhibitors of neutral endopeptidase (NEP EC 3.4.24.11). Selectivity over other zinc metalloproteinases was explored through occupation of the S2′ subsite within NEP. Structural optimisation led to the identification of 5-phenyl oxazole 4f, a potent and selective NEP inhibitor. A crystal structure of the inhibitor bound complex is reported.  相似文献   

7.
Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6?h. This interconversion process “intrinsic reversibility” was exploited by modifications of the ligand’s size (length and bulkiness) to generate analogs with “tunable’ adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ~4.5?mmHg in a sustained manner for at least 12?h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.  相似文献   

8.
Syntheses and structure-activity relationships (SAR) of cGMP selective phosphodiesterase inhibitors are discussed. Potent and selective inhibitors are produced when the C-2 position of tetracyclic guanine 1 is substituted with alkyl chains containing six carbon atoms.  相似文献   

9.
We report herein synthesis of PKCbeta-selective inhibitors possessing the novel pharmacophore of anilino-monoindolylmaleimide. Several compounds of this series exhibited IC50's as low as 50 nM against human PKCbeta2. One of the most potent compounds, 6l, inhibited PKCbeta1 and PKCbeta2 with IC50 of 21 and 5 nM, respectively, and exhibited selectivity of more than 60-fold in favor of PKCbeta2 relative to other PKC isozymes (PKCalpha, PKCgamma, and PKCepsilon).  相似文献   

10.
We designed a series of anilino-indoylmaleimides based on structural elements from literature JAK3 inhibitors 3 and 4, and our lead 5. These new compounds were tested as inhibitors of JAKs 1, 2 and 3 and TYK2 for therapeutic intervention in rheumatoid arthritis (RA). Our requirements, based on current scientific rationale for optimum efficacy against RA with reduced side effects, was for potent, mixed JAK1 and 3 inhibition, and selectivity over JAK2. Our efforts yielded a potent JAK3 inhibitor 11d and its eutomer 11e. These compounds were highly selective for inhibition of JAK3 over JAK2 and TYK. The compounds displayed only modest JAK1 inhibition.  相似文献   

11.
Brassinosteroids (BRs) are phytohormones that control several important agronomic traits, such as flowering, plant architecture, seed yield, and stress tolerance. To manipulate the BR levels in plant tissues using specific inhibitors of BR biosynthesis, a series of novel azole derivatives were synthesized and their inhibitory activity on BR biosynthesis was investigated. Structure–activity relationship studies revealed that 2RS, 4RS-1-[4-(2-allyloxyphenoxymethyl)-2-(4-chlorophenyl)-[1,3]dioxolan-2-ylmethyl]-1H-[1,2,4]triazole (G2) is a highly selective inhibitor of BR biosynthesis, with an IC50 value of approximately 46 ± 2 nM, which is the most potent BR biosynthesis inhibitor observed to date. Use of gibberellin (GA) biosynthesis mutants and BR signaling mutants to analyze the mechanism of action of this synthetic series indicated that the primary site of action is BR biosynthesis. Experiments feeding BR biosynthesis intermediates to chemically treated Arabidopsis seedlings suggested that the target sites of this synthetic series are CYP90s, which are responsible for the C-22 and/or C-23 hydroxylation of campesterol.  相似文献   

12.
Based on the observed biological activities of coumarins and resveratrol, we synthesized fourteen hydroxylated 3-phenylcoumarins (stilbene-coumarin hybrids) including six novel ortho-hydroxy-methoxy substituted derivatives, 1-14, by Perkin reaction. We characterized these compounds concerning their antioxidant activity against 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)-induced pBR322 DNA strand breakage, and their antiproliferative effects on human promyelocytic leukemia HL-60 and human lung adenocarcinoma epithelial A549 cells. Structure-activity relationship information suggests that the introduction of ortho-hydroxy-methoxy groups and ortho-dihydroxy groups on the aromatic A ring could efficiently improve antiproliferative activity. Interestingly, a new derivative, 6-methoxy-7-hydroxy-3-(4'-hydroxyphenyl)coumarin, 9, behaved as a poor antioxidant but appeared to be the most potent antiproliferative agent among the compounds examined, and this activity was mediated by deregulation in cell cycle and induction of apoptosis.  相似文献   

13.
Novel benzyl- and phenyl-isothioureidic derivatives have been synthesised and evaluated as inhibitors of nitric oxide synthesis, induced in lipopolysaccharide (LPS)-activated J774.A1 macrophage cell line. The most potent iNOS inhibitor resulting was 1-methyl-3-phenyl-S-methyl isothiourea 5l.  相似文献   

14.
Cathepsin S is a potential target of autoimmune disease. A series of proline derived compounds were synthesized and evaluated as cathepsin S inhibitors. We discovered potent cathepsin S inhibitors through structure–activity relationship studies of proline analogues. In particular, compound 19-(S) showed promising in vitro/vivo pharmacological activities and properties as a selective cathepsin S inhibitor.  相似文献   

15.
We report the synthesis of novel 3-substituted 5-benzylidene-1-methyl-2-thiohydantoins 3, and their biological evaluation using NADPH oxidase (NOX) 1 and 4. Based on structural and pharmacophore analyses of known inhibitors such as hydroxypyrazole 2, we envisioned interesting 2-thiohydantoin compounds, 3-substituted 5-benzylidene-1-methyl-2-thiohydantoins 3 that would be expected to well match the structural features in 2. Efficient synthesis of eighteen target compounds 3 were achieved through the synthetic pathway of 4  11  3, established after consideration of several plausible synthetic pathways. The inhibitory activities of compounds 3 against NOX 1 and 4 were measured, with some of the target compounds showing similar or higher activities compared with reference 2; in particular, compounds 3bz, 3cz, and 3ez were found to be promising inhibitors of both NOX 1 and 4 with modest isozyme selectivities, which highlights the significance of the 2-thiohydantoin substructure for inhibition of NOX 1 and 4. This marks the first time these compounds have been applied to the inhibition of NOX enzymes.  相似文献   

16.
A series of diaryl ureas with an amide substitution at the 4-position was prepared and found to be potent and selective FLT3 inhibitors with good oral bioavailability and efficacy in a tumor xenograft model.  相似文献   

17.
We report herein the discovery, structure guided design, synthesis and biological evaluation of a novel class of JAK2 inhibitors. Optimization of the series led to the identification of the potent and orally bioavailable JAK2 inhibitor 28 (NMS-P953). Compound 28 displayed significant tumour growth inhibition in SET-2 xenograft tumour model, with a mechanism of action confirmed in vivo by typical modulation of known biomarkers, and with a favourable pharmacokinetic and safety profile.  相似文献   

18.
A small library of new organophosphorylated warfarins and 3-benzylcoumarins were synthesized and evaluated for in vitro cholinesterase inhibition by Ellman’s method. Most of the compounds were found to be selective for butyrylcholinesterase (BChE) over acetylcholinesterase (AChE), with IC50 values ranging from 0.363 μM to 53.0 μM determined after 15 s of enzyme exposure. Comparison of the most potent compound, 3b with its constitutional isomer 2b revealed the high importance of phosphate positioning. Reversed selectivity and a 100-fold reduction in anti-BChE activity was observed when the organophosphate was attached to the benzyl instead of the coumarin. Docking calculations suggest that 3b binds initially as a transition state mimic with near-optimal phosphate orientation relative to S198 and occupation of the oxyanion hole prior to phosphorylation. These results might inspire the design of a new type of non-neuropathic and irreversible coumarin-based inhibitor against BChE.  相似文献   

19.
A series of C-6 or C-3' alkynyl-substituted 4-anilinoquinazoline derivatives was prepared straightforwardly by a Sonogashira reaction of the corresponding bromo-substituted 4-anilinoquinazolines. Bioactive assay of these compounds for in vitro EGFR kinase inhibition demonstrated that the novel 6-hydroxypropynyl-4-anilinoquinazoline 5e was a very potent EGFR kinase inhibitor with an IC(50) of 14 nM.  相似文献   

20.
Estrone sulfamate (EMATE) is a potent irreversible inhibitor of steroid sulfatase (STS). In order to further expand SAR, the compound was substituted at the 2- and/or 4-positions and its 17-carbonyl group was also removed. The following general order of potency against STS in two in vitro systems is observed for the derivatives: The 4-NO(2) > 2-halogens, 2-cyano > EMATE (unsubstituted)>17-deoxyEMATE > 2-NO(2) > 4-bromo>2-(2-propenyl), 2-n-propyl > 4-(2-propenyl), 4-n-propyl > 2,4-(2-propenyl)= 2,4-di-n-propyl. There is a clear advantage in potency to place an electron-withdrawing substituent on the A-ring with halogens preferred at the 2-position, but nitro at the 4-position. Substitution with 2-propenyl or n-propyl at the 2- and/or 4-position of EMATE, and also removal of the 17-carbonyl group are detrimental to potency. Three cyclic sulfamates designed are not STS inhibitors. This further confirms that a free or N-unsubstituted sulfamate group (H(2)NSO(2)O-) is a prerequisite for potent and irreversible inhibition of STS as shown by inhibitors like EMATE and Irosustat. The most potent derivative synthesized is 4-nitroEMATE (2), whose IC(50)s in placental microsomes and MCF-7 cells are respectively 0.8 nM and 0.01 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号