首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tennis Elbow or Lateral Epicondylalgia is manifested by pain over the region of the lateral epicondyle of the humerus, related to use of the wrist extensor muscles. Extensor carpi radialis longus (ECRL) and brevis (ECRB) have been implicated in the dysfunction associated with Lateral Epicondylalgia. For muscles in the human forearm, particularly those in close proximity, selective recordings are nearly impossible without the use of fine wire, indwelling electrodes. These can be inserted in precise locations and have small recording areas. Standard electromyography texts indicate, however, that the activity of ECRL and ECRB cannot be distinguished, even with intramuscular electrodes. We present a new technique for determining the most appropriate sites at which to insert intramuscular electrodes for selective recordings of ECRB and ECRL. The location of ECRB and ECRL was measured on 10 cadaver specimens, 5 right arms and 5 left arms. The distance from the muscle origin to (1) insertion, (2) largest portion of the muscle belly, (3) most proximal fibres and (4) most distal fibres were measured and expressed relative to forearm length. The mean distance and 95% confidence interval was calculated for each of the four measures. These data indicated a significant separation of the belly of each muscle along the length of the forearm. These relative distances were used to mark electrode insertion points on three volunteers. Fine wire electrodes were used to record the electromyogram in three participants. Each participant was required to perform isometric contractions to produce (1) wrist extension torque, (2) radial deviation torque, (3) elbow flexion torque and (4) finger extension. The electromyographic recordings show clear differentiation of ECRB and ECRL with the relative activation patterns reflecting the underlying anatomical organisation of the two muscles. This technique provides an important objective method that can be used in conjunction with manual muscle testing to provide a means of ensuring accurate intramuscular electromyographic recording from these two muscles.  相似文献   

2.
In order to elucidate the functional significance of excitatory spinal reflex arcs (facilitation) between musculus (M.) pronator teres (PT) and M. extensor carpi radialis (ECR, longus: ECRL, brevis: ECRB) in humans, activities of the muscles were studied with electromyography (EMG) and electrical neuromuscular stimulation (ENS). In EMG study, activities of PT, ECRL, ECRB, and M. flexor carpi radialis during repetitive static (isometric) wrist extension and a series of a dynamic motion of wrist flexion/extension in the prone, semiprone, and supine positions of the forearm were recorded in 12 healthy human subjects. In the prone, semiprone, and supine positions, PT and ECR showed parallel activities during the static extension in all, eight, and eight subjects, respectively, and at the extension phase during the dynamic motion in all, eight and five subjects, respectively. These findings suggest that co-contraction of PT and ECR occurs during wrist extension movements at least with the prone forearm. The facilitation must be active during the co-contraction. In ENS study, ENS to PT was examined in 11 out of the 12 and that to ECRL was in the 12 subjects. Before ENS, the forearm was in the prone, semiprone, and supine positions. In all the subjects, ENS to PT induced a motion of forearm pronation to the maximum pronation. ENS to ECRL induced motions of wrist extension to the maximum extension and abduction (radial flexion) to 5-20 degrees of abduction regardless of the positions of the forearm. Moreover, it induced 30-80 degrees supination of the forearm from the prone position. Consequently, combined ENS to PT and ECRL resulted in motions of the extension and abduction while keeping the maximum pronation. These findings suggest that the co-contraction of PT and ECR during wrist extension movements occurs to prevent supinating the forearm. Forearm supination from the prone position should be added to one of the actions of ECRL.  相似文献   

3.
Anatomical partitioning of three multiarticular human muscles.   总被引:3,自引:0,他引:3  
To examine neuromuscular partitioning within human muscles, the innervation patterns and muscle fiber architecture of the flexor carpi radialis (FCR), extensor carpi radialis longus (ECRL) and lateral gastrocnemius (LG) muscles were examined. Consistent patterns of innervation between specimens were found within each of the three muscles. The nerve to the FCR clearly innervates three major architectural divisions of the muscle. The ECRL is innervated by two different muscle nerves. Branches of these nerves innervate at least two distinct anatomical subvolumes. However, the subvolumes of the ECRL defined by muscle architecture are not totally congruent with those defined by the innervation pattern. In the LG, the single muscle nerve branches into two main divisions, and these subsequently divide into branches which supply the three heads. However, each head does not receive a completely private nerve. These results indicate that human muscles are partitioned in a manner roughly similar to the divisions of the same muscles in cats and rats, but with less congruency of architecture and innervation.  相似文献   

4.
Motion and force produced by electrical neuromuscular stimulation (ENS) to each of the extensor carpi radialis longus (ECRL) and brevis (ECRB), and extensor carpi ulnaris (ECU) with the prone (P), semiprone (SP), and supine forearm (S) were studied in ten normal human subjects. Abduction (AB), extension (E), adduction (AD), and flexion (F) directions were represented by, respectively, 0°, 90°, 180°, and 270°. ENS to ECRL, ECRB, and ECU produced motion in direction of, respectively, 60° (mean), 87°, and 205° with P, 66°, 83°, and 166° with SP, and 47°, 66°, and 116° with S to maximal range. Direction/strength (Nm) of force by ENS to ECRL, ECRB, and ECU were, respectively, 54°/1.75, 74°/1.78, and 184°/1.49 with P, 34°/1.65, 63°/1.66, and 152°/1.43 with SP, and 32°/1.66, 70°/1.49, and 147°/1.25 with S. ENS to ECRL exhibited force of 15–20% of maximal E (15–20%Max-E) and 19–29%Max-AB, that to ECRB 24–32%Max-E, and that to ECU 17–30%Max-AD. The force study results suggest that ECRL is an abductor and extensor and ECRB is an extensor rather than an abductor. ECU should be an adductor rather than an extensor with SP and S and an adductor with P. The data must contribute to reconstruct motor functions of paralyzed hands.  相似文献   

5.
The purpose of this study was to investigate how gripping modulates forearm muscle co-contraction prior to and during sudden wrist perturbations. Ten males performed a sub-maximal gripping task (no grip, 5% and 10% of maximum) while a perturbation forced wrist flexion or extension. Wrist joint angles and activity from 11 muscles were used to determine forearm co-contraction and muscle contributions to wrist joint stiffness. Co-contraction increased in all pairs as grip force increased (from no grip to 10% grip), corresponding to a 36% increase in overall wrist joint stiffness. Inclusion of individual muscle contributions to wrist joint stiffness enhanced the understanding of forearm co-contraction. The extensor carpi radialis longus (ECRL) and brevis had the largest stiffness contributions (34.5 ± 1.3% and 20.5 ± 2.3%, respectively), yet muscle pairs including ECRL produced the lowest co-contraction. The muscles contributing most to wrist stiffness were consistent across conditions (ECRL for extensors; Flexor Digitorum Superficialis for flexors), suggesting enhanced contributions rather than muscular redistribution. This work provides investigation of the neuromuscular response to wrist perturbations and gripping demands by considering both co-contraction and muscle contributions to joint stiffness. Individual muscle stiffness contributions can be used to enhance the understanding of forearm muscle control during complex tasks.  相似文献   

6.
The abductor pollicis longus (APL) is one of the primary radial deviators of the wrist, owing to its insertion at the base of the first metacarpal and its large moment arm about the radioulnar deviation axis. Although it plays a vital role in surgical reconstructions of the wrist and hand, it is often neglected while simulating wrist motions in vitro. The aim of this study was to observe the effects of the absence of APL on the distribution of muscle forces during wrist motions. A validated physiological wrist simulator was used to replicate cyclic planar and complex wrist motions in cadaveric specimens by applying tensile loads to six wrist muscles – flexor carpi radialis (FCR), flexor carpi ulnaris, extensor carpi radialis longus (ECRL), extensor carpi radialis brevis, extensor carpi ulnaris (ECU) and APL. Resultant muscle forces for active wrist motions with and without actuating the APL were compared. The absence of APL resulted in higher forces in FCR and ECRL – the synergists of APL – and lower forces in ECU – the antagonist of APL. The altered distribution of wrist muscle forces observed in the absence of active APL control could significantly alter the efficacy of in vitro experiments conducted on wrist simulators, in particular when investigating those surgical reconstructions or rehabilitation of the wrist heavily reliant on the APL, such as treatments for basal thumb osteoarthritis.  相似文献   

7.
It is often assumed that moment arms scale with size and can be normalized by body segment lengths or limb circumferences. However, quantitative scaling relationships between moment arms and anthropometric dimensions are generally not available. We hypothesized that peak moment arms of the elbow flexor and extensor muscles scale with the shorter distance (D(s)) between the elbow flexion axis and a muscle's origin and insertion. To test this hypothesis, we estimated moment arms of six muscles that cross the elbow, digitized muscle attachment sites and bone surface geometry, and estimated the location of the elbow flexion axis in 10 upper extremity cadaveric specimens which ranged in size from a 5'0" female to a 6'4" male. D(s) accurately reflected the differences in peak moment arms across different muscles, explaining 93-99% of the variation in peaks between muscles in the same specimen. D(s) also explained between 55% and 88% of the interspecimen variation in peak moment arms for brachioradialis, biceps, and ECRL. Triceps peak moment arm was significantly correlated to the anterior-posterior dimension of the ulna measured at the olecranon (r(2)=0.61, p=0.008). Radius length provides a good measure of the interspecimen variation in peaks for brachioradialis, biceps, and ECRL. However, bone lengths were not significantly correlated to triceps moment arm or anterior-posterior bone dimensions. This work advances our understanding of the variability and scaling dimensions for elbow muscle moment arms across subjects of different sizes.  相似文献   

8.
Animal‐borne data loggers (ABDLs) or “tags” are regularly used to elucidate animal ecology and physiology, but current literature highlights the need to assess associated deleterious impacts including increased resistive force to motion. Previous studies have used computational fluid dynamics (CFD) to estimate this impact, but many suffer limitations (e.g., inaccurate turbulence modeling, neglecting boundary layer transition, neglecting added mass effects, and analyzing the ABDL in isolation from the animal). A novel CFD‐based method is presented in which a “tag impact envelope” is defined utilizing simulations with and without transition modeling to define upper and lower drag limits, respectively, and added mass coefficients are found via simulations with sinusoidally varying inlet velocity, with modified Navier‐Stokes conservation of momentum equations enforcing a shift to the animal's noninertial reference frame. The method generates coefficients for calculating total resistive force for any velocity and acceleration combination, and is validated against theory for a prolate spheroid. An example case shows ABDL drag impact on a harp seal of 11.21%–16.24%, with negligible influence on added mass. By considering the effects of added mass and boundary layer transition, the approach presented is an enhancement to the CFD‐based ABDL impact assessment methods previously applied by researchers.  相似文献   

9.
The rate-controlling process in the oxygenation of red blood cells is investigated using a Roughton-like model for oxygen diffusion and reaction with hemoglobin. The mathematical equations describing the model are solved using two independent techniques, numerical inversions of the Laplace transform of the equations and numerical solutions via an implicit-explicit finite difference form of the equations. The model is used to re-examine previous theoretical models that incorporate either a red cell membrane that is resistive to oxygen diffusion or an unstirred layer of water surrounding the cell. Although both models have been postulated to be equivalent, the results of the computer simulations demonstrate significant differences between the two models in the rate of oxygenation of the red cells, depending upon the values chosen for the diffusion coefficient for O2 in the membrane and the thickness of the water layer. The difference is apparently due to differences in the induction and transient periods of the water layer model relative to the membrane model.  相似文献   

10.
Subject-specific musculoskeletal models require accurate values of muscle moment arms. The aim of this study was to compare moment arms of wrist tendons obtained from non-invasive magnetic resonance imaging (MRI) to those obtained from an in vitro experimental approach. MRI was performed on ten upper limb cadaveric specimens to obtain the centrelines for the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor carpi radialis longus (ECRL), extensor carpi radialis brevis (ECRB), extensor carpi ulnaris (ECU), and abductor pollicis longus (APL) tendons. From these, the anatomical moment arms about each of the flexion-extension (FE) and radioulnar deviation (RUD) axes of the wrist were calculated. Specimens were mounted on a physiologic wrist simulator to obtain functional measurements of the moment arms using the tendon excursion method. No differences were observed between anatomical and functional values of the FE and RUD moment arms of FCR, ECRL and ECRB, and the RUD moment arm of ECU (p > .075). Scaling the anatomical moment arms relative to ECRB in FE and ECU in RUD reduced differences in the FE moment arm of FCU and the RUD moment arm of APL to less than 15% (p > .139). However, differences persisted in moment arms of FCU in RUD, and ECU and APL in FE (p < .008). This study shows that while measurements of moment arms of wrist tendons using imaging do not always conform to values obtained using in vitro experimental approaches, a stricter protocol could result in the acquisition of subject-specific moment arms to personalise musculoskeletal models.  相似文献   

11.
The effects of creatine oral supplementation combined with a 10-week resistive training of morphometric, contractile and molecular characteristics of human vast lateral muscle fibers were studied. 2 groups consisting of 9 young healthy men each were involved in resistive training of knee extensors for 10 weeks. Volunteers of the first group received per os 20 g of creatine for the 1st week of training and 5 g for the rest of the experimental training period. We found a significant increase of slow and fast-twitch fiber size in both trained groups and a significant increase of Ca-sensitivity of skinned single fiber contractility in creatine-supplemented group. The serum creatine phosphokinase activity in blood samples taken 24 hours after exercise session increased in all stages of the experimental training in both groups. At the same time, the adaptive decrease of the after-exercise CK concentration was observed in the placebo but not in the creatine-supplemented group. The altered integrity of the subsarcolemmal dystrophin layer was revealed in both groups after training.  相似文献   

12.
The effect of the magnetic field curvature on magnetic islands in a tokamak is analyzed. It is demonstrated that the original investigation of this effect by Kotschenreuther et al. (1985) is inconsistent: on the one hand, the authors made the correct assumption that this is an ideal effect and, on the other hand, they described it in terms of the parameters characteristic of the “resistive ordering” approach, which is incompatible with the ideal approximation. More recent studies of the magnetic curvature effect have produced further ambiguities; as a result, a branch of the theory of magnetic islands has arisen that is based on the supposition that the effect under discussion can be described in terms of the Glasser-Greene-Johnson parameter DR. This branch is shown to be erroneous, because the parameter DR describes the plasma response to magnetic field perturbations on spatial scales of about the dimension of the linear resistive layer, while the characteristic spatial scale of the magnetic islands is much longer. It is concluded that the correct theory developed here for the magnetic curvature effect makes more optimistic predictions about its stabilizing role.  相似文献   

13.
The relationship between detection threshold of inspiratory resistive loads and the peaks of the respiratory-related evoked potential (RREP) is unknown. It was hypothesized that the short-latency and long-latency peaks of the RREP would only be elicited by inspiratory loads that exceeded the detection threshold. The detection threshold for inspiratory resistive loads was measured in healthy subjects with inspiratory-interruption or onset load presentations. In a separate protocol, the RREPs were recorded with resistive loads that spanned the detection threshold. The loads were presented in stimulus attend and ignore sessions. Onset and interruption load presentations had the same resistive load detection threshold. The P(1), N(f), and N(1) peaks of the RREP were observed with loads that exceeded the detection threshold in both attend and ignore conditions. The P(300) was present with loads that exceeded the detection threshold only in the attend condition. No RREP components were elicited with subthreshold loads. The P(1), N(f), and P(300) amplitudes varied with resistive load magnitude. The results support the hypothesis that there is a resistive load threshold for eliciting the RREPs. The amplitude of the RREP peaks vary as a function of load magnitude. The cognitive P(300) RREP peak is present only for detectable loads and when the subject attends to the stimulus. The absence of the RREP with loads below the detection threshold and the presence of the RREP elicited by suprathreshold loads are consistent with the gating of these neural measures of respiratory mechanosensory information processing.  相似文献   

14.
The purpose of this study was to determine whether induction of either inspiratory muscle fatigue (expt 1) or diaphragmatic fatigue (expt 2) would alter the breathing pattern response to large inspiratory resistive loads. In particular, we wondered whether induction of fatigue would result in rapid shallow breathing during inspiratory resistive loading. The breathing pattern during inspiratory resistive loading was measured for 5 min in the absence of fatigue (control) and immediately after induction of either inspiratory muscle fatigue or diaphragmatic fatigue. Data were separately analyzed for the 1st and 5th min of resistive loading to distinguish between immediate and sustained effects. Fatigue was achieved by having the subjects breathe against an inspiratory threshold load while generating a predetermined fraction of either the maximal mouth pressure or maximal transdiaphragmatic pressure until they could no longer reach the target pressure. Compared with control, there were no significant alterations in breathing pattern after induction of fatigue during either the 1st or 5th min of resistive loading, regardless of whether fatigue was induced in the majority of the inspiratory muscles or just in the diaphragm. We conclude that the development of inspiratory muscle fatigue does not alter the breathing pattern response to large inspiratory resistive loads.  相似文献   

15.
Respiratory inductive plethysmography (RIP) can be used to obtain a valid measure of tidal volume in humans. This device also compares the contributions to ventilation of the thorax and abdomen. Although thoracoabdominal asynchrony is a prominent clinical feature for patients with airway obstruction, the accuracy of the RIP device to assess the severity of obstruction is unclear. This study analyzes how well RIP variables reflect the degree of a fixed external inspiratory plus expiratory resistive load in foals. Foals were employed because the species and age group are commonly afflicted with respiratory disease. Eight conscious, sedated (xylazine 1.25 mg/kg body wt) foals were subjected to randomly ordered resistive loads at the airway opening and, on a separate day, to histamine aerosol challenge. During resistive loading, phase angle changed significantly, as did phase relation (P < or = 0.05). However, no significant correlation was found between the degree of change in resistive load and the degree to which phase angle or relation was altered (r(s) = 0.41 and 0.25, respectively). In addition, neither phase angle nor relation changed significantly with histamine challenge. We conclude that, although RIP variables changed markedly with fixed upper airway resistive loading, the degree to which they changed was erratic and therefore not useful for grading these obstructions. Furthermore, RIP variables were insensitive measures of histamine-induced bronchoconstriction.  相似文献   

16.
An analytic approach combining the effect of equilibrium diamagnetic flows and the finite ionsound gyroradius associated with electron?ion decoupling and kinetic Alfvén wave dispersion is derived to study resistive drift instabilities in a plasma slab. Linear numerical computations using the NIMROD code are performed with cold ions and hot electrons in a plasma slab with a doubly periodic box bounded by two perfectly conducting walls. A linearly unstable resistive drift mode is observed in computations with a growth rate that is consistent with the analytic dispersion relation. The resistive drift mode is expected to be suppressed by magnetic shear in unbounded domains, but the mode is observed in numerical computations with and without magnetic shear. In the slab model, the finite slab thickness and the perfectly conducting boundary conditions are likely to account for the lack of suppression.  相似文献   

17.
The resistive work of breathing against an external load during inspiration (WRI) was measured at the mouth, during sub-maximal exercise in healthy participants. This measure (which excludes the elastic work component) allows the relationship between resistive work and power, ventilation and exercise modality to be explored. A total of 45 adult participants with healthy lung function took part in a series of exercise protocols, in which the relationship between WRI, power of breathing, PRI and minute ventilation, were assessed during rest, while treadmill walking or ergometer cycling, over a range of exercise intensities (up to 150 Watts) and ventilation rates (up to 48 L min−1) with applied constant resistive loads of 0.75 and 1.5 kPa.L.sec−1. Resting WRI was 0.12 JL−1 and PRI was 0.9 W. At each resistive load, independent of the breathing pattern or exercise mode, the WRI increased in a linear fashion at 20 mJ per litre of , while PRI increased exponentially. With increasing resistive load the work and power at any given increased exponentially. Calculation of the power to work ratio during loaded breathing suggests that loads above 1.5 kPa.L.sec−1 make the work of resistive breathing become inhibitive at even a moderate (>30 L sec−1). The relationship between work done and power generated while breathing against resistive loads is independent of the exercise mode (cycling or walking) and that ventilation is limited by the work required to breathe, rather than an inability to maintain or generate power.  相似文献   

18.
In experiments on anesthetized cats, switch on of additional inelastic respiration resistance (resistive load) produced, apart from slowing of the respiratory flows, an increase in the activity of motoneurons and inspiratory intrathoracic pressure. Bilateral vagotomy resulted in disappearance of resistive load-induced elevation of the phrenic nerve activity, but did not abolish the growth of the inspiratory effort. Analysis of the evidence obtained indicates that activation of phrenic motoneurons associated with increased respiration resistance is underlain by prolongation of the inspiratory phase that is consequent on relaxation of the inspiratory inhibition. It is suggested that, in addition to the mechanism depicted, the compensatory reaction to the resistive load involves, apart from diaphragm participation, other inspiratory muscles as well as enhanced contractions of respiratory muscles provided by the properties of muscular fiber.  相似文献   

19.
Previous fiber-optic studies in humans have demonstrated narrowing of the glottic aperture in expiration during application of expiratory resistive loads. Nine healthy subjects were studied to determine the effect of expiratory resistive loads on the electromyographic activity of the thyroarytenoid (TA) muscle, a vocal cord adductor. Four of the nine subjects also underwent the application of inspiratory resistive loads and voluntary prolongation of either inspiratory (TI) or expiratory (TE) time. TA activity was recorded by intramuscular hooked-wire electrodes. During quiet breathing in all subjects, the TA was phasically active on expiration and often tonically active throughout the respiratory cycle. TA expiratory activity progressively increased with increasing levels of expiratory load. Inspiratory loads resulted in increased TA "inspiratory" activity. Voluntary prolongation of TE to times similar to those reached during loaded breathing induced increases in TA expiratory activity similar to those reached during the loaded state. Voluntary prolongation of TI was associated with an increase in TA inspiratory activity. Similar increases in TI during inspiratory loading or voluntary conditions were associated with comparable increases in TA inspiratory activity in three of the four subjects. In conclusion, increased activation of TA during the application of expiratory resistive loads implies that the reported narrowing of glottic aperture during expiratory loading is an active phenomenon. Changes in activation of the TA with resistive loads appear to be related to changes in respiratory pattern.  相似文献   

20.
Solution processed polymer:fullerene solar cells on opaque substrates have been fabricated in conventional and inverted device configurations. Opaque substrates, such as insulated steel and metal covered glass, require a transparent conducting top electrode. We demonstrate that a high conducting (900 S cm?1) PEDOT:PSS layer, deposited by a stamp‐transfer lamination technique using a PDMS stamp, in combination with an Ag grid electrode provides a proficient and versatile transparent top contact. Lamination of large size PEDOT:PSS films has been achieved on variety of surfaces resulting in ITO‐free solar cells. Power conversion efficiencies of 2.1% and 3.1% have been achieved for P3HT:PCBM layers in inverted and conventional polarity configurations, respectively. The power conversion efficiency is similar to conventional glass/ITO‐based solar cells. The high fill factor (65%) and the unaffected open‐circuit voltage that are consistently obtained in thick active layer inverted geometry devices, demonstrate that the laminated PEDOT:PSS top electrodes provide no significant potential or resistive losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号