首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A disrupted allele (r1) of a cadherin gene (Ha_BtR) is genetically associated with incompletely recessive resistance to Bacillus thuringiensis toxin Cry1Ac in a Cry1Ac-selected strain (GYBT) of Helicoverpa armigera. The r1 allele of Ha_BtR was introgressed into a susceptible SCD strain by crossing the GYBT strain to the SCD strain, followed by repeated backcrossing to the SCD strain and molecular marker assisted family selection. The introgressed strain (designated as SCD-r1, carrying homozygous r1 allele) obtained 438-fold resistance to Cry1Ac, >41-fold resistance to Cry1Aa and 31-fold resistance Cry1Ab compared with the SCD strain; however, there was no significant difference in susceptibility to Cry2Aa between the integrated and parent strains. It confirms that the loss of function mutation of Ha_BtR alone can confer medium to high levels of resistance to the three Cry1A toxins in H. armigera. Reciprocal crosses between the SCD and SCD-r1 strains showed that resistance to Cry1Ac in the SCD-r1 strain was completely recessive. Life tables of the SCD and SCD-r1 strains on artificial diet in the laboratory were constructed, and results showed that the net replacement rate (R0) did not differ between the strains. The toxicity of two chemical insecticides, fenvalerate and monocrotophos, against the SCD-r1 strain was not significantly different from that to the SCD strain. However, larval development time of the SCD-r1 strain was significantly longer than that of the SCD strain, indicating a fitness cost of slower larval growth is associated with Ha_BtR disruption in H. armigera.  相似文献   

2.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

3.
The cotton bollworm Helicoverpa armigera is the major insect pest targeted by cotton genetically engineered to produce the Bacillus thuringiensis toxin (transgenic Bt cotton) in the Old World. The evolution of this pest's resistance to B. thuringiensis toxins is the main threat to the long-term effectiveness of transgenic Bt cotton. A deletion mutation allele (r(1)) of a cadherin gene (Ha_BtR) was previously identified as genetically linked with Cry1Ac resistance in a laboratory-selected strain of H. armigera. Using a biphasic screen strategy, we successfully trapped two new cadherin alleles (r(2) and r(3)) associated with Cry1Ac resistance from a field population of H. armigera collected from the Yellow River cotton area of China in 2005. The r(2) and r(3) alleles, respectively, were created by inserting the long terminal repeat of a retrotransposon (designated HaRT1) and the intact HaRT1 retrotransposon at the same position in exon 8 of Ha_BtR, which results in a truncated cadherin containing only two ectodomain repeats in the N terminus of Ha_BtR. This is the first time that the B. thuringiensis resistance alleles of a target insect of Bt crops have been successfully detected in the open field. This study also demonstrated that bollworm larvae carrying two resistance alleles can complete development on Bt cotton. The cadherin locus should be an important target for intensive DNA-based screening of field populations of H. armigera.  相似文献   

4.
A laboratory strain (GY) of Helicoverpa armigera (Hubner) was established from surviving larvae collected from transgenic cotton expressing a Bacillus thuringiensis var. kurstaki insecticidal protein (Bt cotton) in Gaoyang County, Hebei Province, People's Republic of China, in 2001. The GYBT strain was derived from the GY strain through 28 generations of selection with activated Cry1Ac delivered by diet surface contamination. When resistance to Cry1Ac in the GYBT strain increased to 564-fold after selection, we detected high levels of cross-resistance to Cry1Aa (103-fold) and Cry1Ab (>46-fold) in the GYBT strain with reference to those in the GY strain. The GYBT strain had a low level of cross-resistance to B. thuringiensis var. kurstaki formulation (Btk) (5-fold) and no cross-resistance to Cry2Aa (1.4-fold). Genetic analysis showed that Cry1Ac resistance in the GYBT strain was controlled by one autosomal and incompletely recessive gene. The cross-resistance pattern and inheritance mode suggest that the Cry1Ac resistance in the GYBT strain of H. armigera belongs to "mode 1," the most common type of lepidopteran resistance to B. thuringiensis toxins. A cadherin gene was cloned and sequenced from both the GY and GYBT strains. Disruption of the cadherin gene by a premature stop codon was associated with a high level of Cry1Ac resistance in H. armigera. Tight linkage between Cry1Ac resistance and the cadherin locus was observed in a backcross analysis. Together with previous evidence found with Heliothis virescens and Pectinophora gossypiella, our results confirmed that the cadherin gene is a preferred target for developing DNA-based monitoring of B. thuringiensis resistance in field populations of lepidopteran pests.  相似文献   

5.
苏云金芽孢杆菌Bacillus thuringiensis生产的晶体毒素被广泛用作农林害虫的杀虫剂。鳞翅目昆虫受体蛋白是阐明其与晶体毒素相互作用的重要模式。文中纯化了苏云金芽孢杆菌的晶体毒素蛋白,质谱鉴定为Cry1Ac毒素,然后重组表达家蚕氨肽酶N (BmAPN6) 和类钙粘蛋白 (CaLP) 结合结构域。利用免疫共沉淀、Far-Western印迹和酶联免疫吸附试验,证明Cry1Ac毒素蛋白和BmAPN6之间的相互作用。在Sf9细胞中,对Cry1Ac毒素的细胞毒活性分析,表明BmAPN6参与Cry1Ac毒素诱导的细胞形态异常和裂解死亡。文中也利用相同的方法,对钙粘蛋白的3个结合位点CR7、CR11和CR12进行相互作用分析,结果表明3个重复结构域是CaLP的Cry1Ac结合位点。上述结果表明,BmAPN6和CaLP可作为Cry1Ac毒素致病的功能性受体,为进一步揭示晶体毒素的致病机制和基因编辑增强家蚕抗病性提供了研究靶标。  相似文献   

6.
Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac   总被引:4,自引:0,他引:4  
Laboratory selection increased resistance of pink bollworm (Pectinophora gossypiella) to the Bacillus thuringiensis toxin Cry1Ac. Three selections with Cry1Ac in artificial diet increased resistance from a low level to >100-fold relative to a susceptible strain. We used artificial diet bioassays to test F1 hybrid progeny from reciprocal crosses between resistant and susceptible strains. The similarity between F1 progeny from the two reciprocal crosses indicates autosomal inheritance of resistance. The dominance of resistance to Cry1Ac depended on the concentration. Resistance was codominant at a low concentration of Cry1Ac, partially recessive at an intermediate concentration, and completely recessive at a high concentration. Comparison of the artificial diet results with previously reported results from greenhouse bioassays shows that the high concentration of Cry1Ac in bolls of transgenic cotton is essential for achieving functionally recessive inheritance of resistance.  相似文献   

7.
Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.  相似文献   

8.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

9.
Disruption of the Ha_BtR (a cadherin gene) is genetically linked to resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in the GYBT strain of Helicoverpa armigera. Brush border membrane vesicles (BBMVs) prepared from midguts of both the Cry1Ac-resistant GYBT strain (homozygous for a deletion knockout of Ha_BtR) and the susceptible GY strain (homozygous for the wild type of Ha_BtR) possessed saturable and specific binding ability to (125)I-Cry1Ac. The binding constant (K(d)) of the GY strain was significantly lower than that of the resistant GYBT strain, whereas their binding site concentrations (B(max)) were similar. When midgut BBMVs were reacted directly with streptavidin conjugated to horseradish peroxidase, the GY strain had very clear 120- and 85-kDa protein bands, which indicated that the 120- and 85-kDa bands are endogenous biotin-containing proteins. However, the GYBT strain almost completely lost these two biotin-containing proteins. Ligand blotting with biotinylated Cry1Ac toxin showed midgut BBMVs of the GY strain contain five protein bands of 210-, 190-, 150-, 120-, and 85-kDa, respectively, while BBMVs of the GYBT strain contain only two protein bands of 150- and 120-kDa. 120-kDa bands may consist of two proteins with coincidentally the same molecular weight (putatively, an APN and a biotin-containing protein). Our results showed that the binding pattern of Cry1Ac to midgut BBMVs of H. armigera was altered quantitatively and qualitatively by knockout of Ha_BtR. There are multiple Cry1Ac-binding proteins in the midgut of susceptible H. armigera, but only the Ha_BtR can be considered as a putative functional receptor of Cry1Ac. Possible involvement of other receptor proteins in the intoxication process in vivo could not be excluded.  相似文献   

10.
Bacillus thuringiensis (Bt) insecticidal toxins have been globally utilized for control of agricultural insects through spraying or transgenic crops. Binding of Bt toxins to special receptors on midgut epithelial cells of target insects is a key step in the mode of action. Previous studies suggested aminopeptidase N1 (APN1) as a receptor or putative receptor in several lepidopteran insects including Helicoverpa armigera through evidence from RNA interefence‐based gene silencing approaches. In the current study we tested the role of APNs in the mode of action of Bt toxins using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR‐associated protein 9‐mediated gene knockout. Three APN genes (HaAPN1, HaAPN2 and HaAPN5) were individually knocked out in a susceptible strain (SCD) of H. armigera to establish three homozygous knockout strains. Qualitative in vitro binding studies indicated binding of Cry1Ac or Cry2Ab to midgut brush border membrane vesicles was not obviously affected by APN knockout. Bioassay results showed that none of the three knockouts had significant changes in susceptibility to Cry1A or Cry2A toxins when compared with the SCD strain. This suggests that the three HaAPN genes we tested may not be critical in the mode of action of Cry1A or Cry2A toxins in H. armigera.  相似文献   

11.
The cotton bollworm Helicoverpa armigera is the major insect pest targeted by cotton genetically engineered to produce the Bacillus thuringiensis toxin (transgenic Bt cotton) in the Old World. The evolution of this pest's resistance to B. thuringiensis toxins is the main threat to the long-term effectiveness of transgenic Bt cotton. A deletion mutation allele (r1) of a cadherin gene (Ha_BtR) was previously identified as genetically linked with Cry1Ac resistance in a laboratory-selected strain of H. armigera. Using a biphasic screen strategy, we successfully trapped two new cadherin alleles (r2 and r3) associated with Cry1Ac resistance from a field population of H. armigera collected from the Yellow River cotton area of China in 2005. The r2 and r3 alleles, respectively, were created by inserting the long terminal repeat of a retrotransposon (designated HaRT1) and the intact HaRT1 retrotransposon at the same position in exon 8 of Ha_BtR, which results in a truncated cadherin containing only two ectodomain repeats in the N terminus of Ha_BtR. This is the first time that the B. thuringiensis resistance alleles of a target insect of Bt crops have been successfully detected in the open field. This study also demonstrated that bollworm larvae carrying two resistance alleles can complete development on Bt cotton. The cadherin locus should be an important target for intensive DNA-based screening of field populations of H. armigera.  相似文献   

12.
Binding studies using 125I-Cry1Ac and biotinylated Cry1Fa toxins indicate the occurrence of a common receptor for Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Our results, along with previous binding data and the observed cases of cross-resistance, suggest that this pattern seems to be widespread among lepidopteran species.  相似文献   

13.
Interactions between the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), its larval parasitoid Microplitis mediator (Haliday) (Hymenoptera: Braconidae), and the Cry1Ac toxin of Bacillus thuringiensis Berliner were evaluated under laboratory conditions. The growth of H. armigera larvae was delayed and its pupal rate and pupal weight decreased when they were fed on a diet containing Cry1Ac toxin. Due to the lowered growth rate of the host larvae, the time available for parasitization of H. armigera by M. mediator increased when the host larvae were reared on a diet containing Cry1Ac toxin at concentrations of 0.5, 1, 2, and 4 µg g?1. The longevity of female and male parasitoids was not significantly affected when newly emerging wasps fed on honey solutions containing three different concentrations of Cry1Ac toxin (125, 250, and 500 µg ml?1). When female parasitoids were fed on honey solutions containing Cry1Ac, their offsprings’ egg and larval development period, pupal weight, length of pupation, adult weight, and adult longevity did not change significantly in most of the treatments compared with controls. When the female parasitoids parasitized host larvae that had been fed on a diet containing 0.5, 1, 2, 4, and 8 µg g?1 Cry1Ac toxin, their offsprings’ eggs and larvae were significantly delayed. Their pupal weight, adult weight, and adult longevity were also significantly less than controls.  相似文献   

14.
15.
Binding studies using (125)I-Cry1Ac and biotinylated Cry1Fa toxins indicate the occurrence of a common receptor for Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Our results, along with previous binding data and the observed cases of cross-resistance, suggest that this pattern seems to be widespread among lepidopteran species.  相似文献   

16.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) causes huge economic losses in cotton production around the world. Tannin, one of the important secondary substances in cotton plants, can increase the δ‐endotoxin activity of Bacillus thuringiensis ssp. kurstaki. The mechanism of interaction between tannin and Bt toxin on H. armigera is unclear. We investigated the interaction between tannic acid and Cry1Ac toxin in H. armigera, and monitored survival, growth, and development during the larval period after treating the larvae with four concentrations of Cry1Ac toxin (0, 2, 8, and 14 μg?1) alone or in combination with four concentrations of tannic acid (0, 0.5, 1, and 2 mg g?1). Mortality of larvae treated with both tannic acid and Cry1Ac was higher than the mortality of larvae treated with tannic acid or Cry1Ac alone. Mortality was 47.5 and 51.5% in larvae treated with 14 μg g?1 Cry1Ac alone or 2 mg g?1 tannic acid alone, respectively. In contrast, larval mortality was 75% when treated with the mixture of 14 μg g?1 Cry1Ac and 2 mg g?1 tannic acid, suggesting that a mixture of the two enhanced the effectiveness of each one alone. The developmental time of larvae treated with the combination of tannic acid and Cry1Ac was significantly longer than when they were treated with Cry1Ac or tannic acid alone. Larval weight, pupal weight, and pupation rate were also significantly reduced in larvae treated with both toxins, compared with the larvae treated with either toxin alone. These results showed that the interactive effect of tannic acid and Cry1Ac on larval growth inhibition is additive, and that tannic acid improves Cry1Ac toxicity to insects. Tannic acid used in combination with B. thuringiensis might potentially reduce overall insecticide use, thus delaying development of insecticide resistance.  相似文献   

17.
Helicoverpa armigera (Hübner) is one of the most destructive pests of several field and vegetable crops, with indiscriminate use of insecticides contributing to multiple instances of resistance. In the present study we assessed whether H. armigera had developed resistance to Bt cotton and compared the results with several conventional insecticides. Furthermore, the genetics of resistance was also investigated to determine the inheritance to Cry1Ac resistance. To investigate the development of resistance to Bt cotton, and selected foliar insecticides, H. armigera populations were sampled in 2010 and 2011 in several cotton production regions in Pakistan. The resistance ratios (RR) for Cry1Ac, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin and deltamethrin were 580-fold, 320-, 1110-, 1950-, 200-, 380, 690, and 40-fold, respectively, compared with the laboratory susceptible (Lab-PK) population. Selection of the field collected population with Cry1Ac in 2010 for five generations increased RR to 5440-fold. The selection also increased RR for deltamethrin, chlorpyrifos, profenofos, cypermethrin, spinosad, indoxacarb, abamectin to 125-folds, 650-, 2840-, 9830-, 370-, 3090-, 1330-fold. The estimated LC50s for reciprocal crosses were 105 µg/ml (Cry1Ac-SEL female × Lab-PK male) and 81 g µg/ml (Lab-PK female × Cry1Ac-SEL male) suggesting that the resistance to Cry1Ac was autosomal; the degree of dominance (DLC) was 0.60 and 0.57 respectively. Mixing of enzyme inhibitors significantly decreased resistance to Cry1Ac suggesting that the resistance to Cry1Ac and other insecticides tested in the present study was primarily metabolic. Resistance to Cry1Ac was probably due to a single but unstable factor suggesting that crop rotation with non-Bt cotton or other crops could reduce the selection pressure for H. armigera and improve the sustainability of Bt cotton.  相似文献   

18.
Bacillus thuringiensis Cry1Ac insecticidal toxin binds specifically to 120kDa aminopeptidase N (APN) (EC 3.4.11.2) in the epithelial brush border membrane of Manduca sexta midguts. The isolated 120-kDa APN is a member of a functional Cry1 toxin receptor complex (FEBS Lett. 412 (1997) 270). The 120-kDa form is glycosyl-phosphatidylinositol (GPI) anchored and converted to a 115-kDa form upon membrane solubilization. The 115-kDa APN also binds Cry1A toxins and Cry1Ac binding is inhibited by N-acetylgalactosamine (GalNAc). Here we determined the monosaccharide composition of APN. APN is 4.2mol% carbohydrate and contains GalNAc, a residue involved in Cry1Ac interaction. APN remained associated with non-covalently bound lipids through anion-exchange column purification. Most associated lipids were separated from APN by hydrophobic interaction chromatography yielding a lipid aggregate. Chemical analyses of the lipid aggregate separated from APN revealed neutral lipids consisting mostly of diacylglycerol and free fatty acids. The fatty acids were long, unsaturated chains ranging from C:14 to C:22. To test the effect of APN-associated lipids on Cry1Ac function, the lipid aggregate and 115-kDa APN were reconstituted into phosphatidylcholine (PC) vesicles. The lipid aggregate increased the amount of Cry1Ac binding, but binding due to the lipid aggregate was not saturable. In contrast the lipid aggregate promoted Cry1Ac-induced release of 86Rb(+) at the lowest Cry1Ac concentration (50nM) tested. The predominant neutral lipid component extracted from the lipid aggregate promoted Cry1Ac-induced 86Rb(+) release from membrane vesicles in the presence of APN.  相似文献   

19.
The Bacillus thuringiensis Cry1Ac toxin specifically binds to a 120 kDa aminopeptidase N (APN) receptor in Manduca sexta. The binding interaction is mediated by GalNAc, presumably covalently attached to the APN as part of an undefined glycan structure. Here we detail a simple, rapid and specific chemical deglycosylation technique, applicable to glycoproteins immobilized on Western blots. We used the technique to directly and unambiguously demonstrate that carbohydrates attached to 120 kDA APN are in fact binding epitopes for Cry1Ac toxin. This technique is generally applicable to all putative Cry toxin/receptor combinations. We analyzed the various glycans on the 120 kDA APN using carbohydrate compositional analysis and lectin binding. The data indicate that in the average APN molecule, 2 of 4 possible N-glycosylation sites are occupied with fucosylated paucimannose [Man(2-3)(Fuc(1-2)GlcNAc(2)-peptide] type N-glycans. Additionally, we identified 13 probable O-glycosylation sites, 10 of which are located in the Thr/Pro rich C-terminal "stalk" region of the protein. It is likely that 5-6 of the 13 sites are occupied, probably with simple [GalNAc-peptide] type O-glycans. This O-glycosylated C-terminal stalk, being GalNAc-rich, is the most likely binding site for Cry1Ac.  相似文献   

20.
The evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from Bacillus thuringiensis (Bt). However, fitness costs may act to delay pest resistance to Bt toxins. Meta-analysis of results from four previous studies revealed that the entomopathogenic nematode Steinernema riobrave (Rhabditida: Steinernematidae) imposed a 20% fitness cost for larvae of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), that were homozygous for resistance to Bt toxin Cry1Ac, but no significant fitness cost was detected for heterozygotes. We conducted greenhouse and laboratory selection experiments to determine whether S. riobrave would delay the evolution of pink bollworm resistance to Cry1Ac. We mimicked the high dose/refuge scenario in the greenhouse with Bt cotton (Gossypium hirsutum L.) plants and refuges of non-Bt cotton plants, and in the laboratory with diet containing Cry1Ac and refuges of untreated diet. In both experiments, half of the replicates were exposed to S. riobrave and half were not. In the greenhouse, S. riobrave did not delay resistance. In the laboratory, S. riobrave delayed resistance after two generations but not after four generations. Simulation modeling showed that an initial resistance allele frequency > 0.015 and population bottlenecks can diminish or eliminate the resistance-delaying effects of fitness costs. We hypothesize that these factors may have reduced the resistance-delaying effects of S. riobrave in the selection experiments. The experimental and modeling results suggest that entomopathogenic nematodes could slow the evolution of pest resistance to Bt crops, but only under some conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号