首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
We evaluated 2-styrylindolium derivatives (611) as novel and selective probes for neurofibrillary tangles (NFTs) on brain sections of AD patients. The staining experiments indicated that these compounds may bind selectively to NFTs in the presence of ß-amyloid (Aß) plaques. Cell free binding assays confirmed that 2-[2-[4-(1-pyrrolidinyl)phenyl]ethenyl]-1,3,3-trimethyl-3H-indolium iodide (9) and 2-[2-[4-(diethylamino)phenyl]ethenyl]-1-butyl-3,3-dimethyl-3H-indolium iodide (11) display excellent affinities to Tau-aggregates (IC50 values of 5.1 and 1.4 nM, respectively) in the displacement of Thiazin Red R. These probes have good solubility in distilled water and low or no cytotoxicity in zebrafish embryo and liver hepatocellular carcinoma cell assays.  相似文献   

2.
Nucleic acid sandwich assays improve low-density array analysis through the addition of a capture probe and a specific label, increasing specificity and sensitivity. Here, we employ photo-initiated porous polymer monolith (PPM) as a high-surface area substrate for sandwich assay analysis. PPMs are shown to enhance extraction efficiency by 20-fold from 2 μl of sample. We further compare the performance of labeled linear probes, quantum dot labeled probes, molecular beacons (MBs) and tentacle probes (TPs). Each probe technology was compared and contrasted with traditional hybridization methods using labeled sample. All probes demonstrated similar sensitivity and greater specificity than traditional hybridization techniques. MBs and TPs were able to bypass a wash step due to their ‘on–off’ signaling mechanism. TPs demonstrated reaction kinetics 37.6 times faster than MBs, resulting in the fastest assay time of 5 min. Our data further indicate TPs had the most sensitive detection limit (<1 nM) as well as the highest specificity (>1 × 104 improvement) among all tested probes in these experiments. By matching the enhanced extraction efficiencies of PPM with the selectivity of TPs, we have created a format for improved sandwich assays.  相似文献   

3.
The TRAF2 and NCK interacting kinase (TNIK) has been proposed to play a role in cytoskeletal organization and synaptic plasticity and has been linked, among others, to neurological disorders. However, target validation efforts for TNIK have been hampered by the limited kinase selectivity of small molecule probes and possible functional compensation in mouse models. Both issues are at least in part due to its close homology to the kinases MINK1 (or MAP4K6) and MAP4K4 (or HGK). As part of our interest in validating TNIK as a therapeutic target for neurological diseases, we set up a panel of biochemical and cellular assays, which are described herein. We then examined the activity of known amino-pyridine-based TNIK inhibitors (1, 3) and prepared structurally very close analogs that lack the ability to inhibit the target. We also developed a structurally orthogonal, naphthyridine-based TNIK inhibitor (9) and an inactive control molecule of the same chemical series. These validated small-molecule probes will enable dissection of the function of TNIK family in the context of human disease biology.  相似文献   

4.
Selective and sensitive detection of G-quadruplex DNA structures is an important issue and attracts extensive interest. To this end, numerous small molecular fluorescent probes have been designed. Here, we present a series of N-alkylated styrylquinolinium dyes named Ls-1, Ls-2 and Ls-3 with varying side groups at the chain end. We found that these dyes exhibited different binding behaviors to DNAs, and Ls-2 with a sulfonato group at the chain end displayed sensitivity and selectivity to G-quadruplex DNA structures in vitro. The characteristics of this dye and its interaction with G-quadruplex DNA were comprehensively investigated by means of UV–vis spectrophotometry, fluorescence, circular dichroism and molecular docking. Furthermore, confocal fluorescence images and MTT assays indicated dye Ls-2 could pass through membrane and enter the living HepG2 cells with low cytotoxicity.  相似文献   

5.
Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic illnesses mostly in ruminants. MAP infection of intestinal tissue triggers a fatal inflammatory disorder, Johne's disease (paratuberculosis). Development of fast and reliable diagnostic methods for Johne's disease in clinically suspected ruminants requires the discovery of MAP-specific antigens that induce immune responses. Despite a longtime interest in finding such antigens that can detect serum antibody responses with high sensitivity, the antigens currently used for a diagnosis of the MAP infections are the crude extracts from the whole cell. We performed the serum antibody response assay-guided purification of the ethanol extract from MAP isolated from an infected cow. With the results of extensive fractionations and in vitro assays, we identified that arachidyl-d-Phe-N-Me-l-Val-l-Ile-l-Phe-l-Ala-OH (named lipopeptide IIß, 3) exhibited the highest antibody binding activity in serum of a MAP-infected cattle compared with the other lipopeptides isolated from MAP. The absolute chemistry of 3 was determined unequivocally via our high-performance liquid chromatography (HPLC)–amino acid databases. α-Amino lipopeptide IIß and its fluorescent probes were synthesized and evaluated in serum antibody binding activity assays. Lipopeptide IIß-(2S)-NH2 (9) and its dansyl and fluorescein isothiocyanate (FITC) probes (10 and 11) exhibited antibody-mediated binding activity; thus, such MAP-specific lipopeptide probes can be potential biomarkers for the development of rapid and accurate diagnosis of Johne's disease.  相似文献   

6.
To identify sialic acid binding proteins from complex proteomes, three photocrosslinking affinity-based probes were constructed using Neu5Ac (5 and 6) and Neu5Ac2en (7) scaffolds. Kinetic inhibition assays and Western blotting revealed the Neu5Ac2en-based 7 to be an effective probe for the labeling of a purified gut microbial sialidase (BDI_2946) and a purified human sialic acid binding protein (hCD33). Additionally, LC–MS/MS affinity-based protein profiling verified the ability of 7 to enrich a low-abundance sialic acid binding protein (complement factor H) from human serum thus validating the utility of this probe in a complex context.  相似文献   

7.
DNA-binding agents have been considered as an established opportunity for the development of anticancer drugs and DNA fluorescence probes. This work reported the synthesis of two novel carbazole derivatives (1 and 2) and investigated their DNA binding properties, living cell image, and cytotoxicity. The results demonstrated that both compounds presented the higher binding affinity to G-quadruplex than to duplex DNA by means of UV–Vis absorption titration and fluorescent intercalator displacement. Continuous variation analysis indicated that their binding stoichiometries of the compound/G-quadruplex were near 2 except the compound/bcl-2. Circular dichroism spectra showed that both compounds had no influence on the conformation of G-quadruplexes. Fluorescence titrations indicated that 2 had the potential to be a G-quadruplex selective fluorescent probe, while 1 could be used as a fluorescent probe for duplex DNA. Confocal fluorescence images indicated that both compounds could enter the living HepG2 cells, and 1 mainly located in nucleus whereas 2 mainly distributed in cytoplasm. DNase and RNase digest tests indicated that both compounds could enter into the nucleus and interact with duplex DNA, especially, 2 could interact with RNA and/or G-quadruplex DNA. They also exhibited an obvious antiproliferative activity to HepG2 by using MTT assays, with IC50 values of 2.7 and 9.5?μM for 1 and 2, respectively.  相似文献   

8.
A facile synthesis of six 4-iodophenyl tagged sphingosine (SP) derivatives bearing alkyl chain lengths from 6 to 13 is described. The key steps for the assembly of these molecules, 5af, are Suzuki–Miyaura cross-coupling and cross-metathesis reactions. The feasibility of radiolabeling was demonstrated by synthesizing two 125I labeled compounds, [125I]5c and [125I]5e. In vitro enzyme assays indicated that the molecules, 5ce, are potent inhibitors. Thus, they deserve further evaluation as potential radioactive probes for tumor imaging.  相似文献   

9.
Two new photoactive compounds (1 and 2) derived from the 9-amidoacridine chromophore have been synthesized and fully characterized. Their abilities to produce singlet oxygen upon irradiation have been compared. The synthesized compounds show very different self-aggregating properties since only 1 present a strong tendency to aggregate in water. Biological assays were conducted with two cell types: hepatoma cells (Hep3B) and human umbilical vein endothelial cells (HUVEC). Photodynamic therapy (PDT) studies carried out with Hep3B cells showed that non-aggregating compound 2 showed photoxicity, ascribed to the production of singlet oxygen, being aggregating compound 1 photochemically inactive. On the other hand suspensions of 1, characterized as nano-sized aggregates, have notable antiproliferative activity towards this cell line in the dark.  相似文献   

10.
There is a high demand for the development of an imaging agent for neurofibrillary tangles (NFTs) detection in Alzheimer’s diagnosis. In the present study, a series of rhodanine-3-acetic acids was synthesized and evaluated for fluorescence imaging of NFTs in brain tissues of AD patients. Five out of seven probes have shown excellent binding affinity to NFTs over amyloid plaques in the Thiazine red R displacement assay. However, the selectivity in this in vitro assay is not confirmed by the histopathological evaluation, which indicates significant differences in the binding sites in the assays. Probe 6 showed binding affinity (IC50 = 19 nM) to tau aggregates which is the highest among this series. Probes 2, 3, 4 and 5 display IC50 values of lower than 100 nM to tau aggregates to displace Thiazine red R. Evaluation of the cytotoxicity of these five probes with human liver carcinoma cells revealed that these compounds excert negligible cytotoxicity. The in vivo studies with zebrafish embryos confirmed negligible cytotoxicity at 24 and 72 h post fertilization.  相似文献   

11.
Three fluorescent probes 3a, 3b, and 4 have been synthesized through conjugation of fluorescein and difluorescein groups to the 7-OH of C-2 modified paclitaxel and cephalomannine derivatives with very high affinity to microtubules. All these probes exhibited potent tubulin assembly promotion and tumor cell killing activities, thus may be useful as tools for the determination of thermodynamic parameters and exploration of ligand–microtubule interactions.  相似文献   

12.
The heat shock protein 70 (Hsp70) family of molecular chaperones are highly expressed in tumors. Inhibitors containing a pyridinium-modified benzothiazole, such as JG-98, bind to a conserved, allosteric site in Hsp70, showing promising anti-proliferative activity in cancer cells. When bound to Hsp70, the charged pyridinium makes favorable contacts; however, this moiety also increases the inhibitor’s fluorescence, giving rise to undesirable interference in biochemical and cell-based assays. Here, we explore whether the pyridinium can be replaced with a neutral pyridine. We report that pyridine-modified benzothiazoles, such as compound 17h (JG2-38), have reduced fluorescence, yet retain promising anti-proliferative activity (EC50 values ~0.1 to 0.07 µM) in breast and prostate cancer cell lines. These chemical probes are expected to be useful in exploring the roles of Hsp70s in tumorigenesis and cell survival.  相似文献   

13.
Three known (13) and a novel (4) monoterpene indole alkaloids have been isolated from the methanol extract of leaves of Tabernaemontana elegans and their structures were elucidated by a series of spectroscopic experiments, involving NMR, MS, UV, and IR techniques. The isolated monoterpene indole alkaloids along with previously described β-carbolines (57) from the same specimen were studied for their apoptosis induction activity in human hepatoma HuH-7 cells. Methodology for apoptosis induction studies included cell viability assays, nuclear morphology assessments, and general caspase-3-like activity assays. The monoterpene indole alkaloids, tabernaemontanine (1) and vobasine (3) showed the most promising apoptosis induction profile in HuH-7 cells.  相似文献   

14.
Matrix metalloproteinase-12 (MMP-12, macrophage elastase) is a member of the MMP family that is responsible for the degradation of extracellular matrix, and is associated with the inflammatory process of chronic obstructive pulmonary disease (COPD). COPD, characterized by progressive and irreversible airflow obstruction, is recently a major cause of mortality and morbidity worldwide. Herein, to develop radioiodinated probes for the early diagnosis of COPD, we designed and synthesized novel MMP-12-targeted dibenzofuran compounds (13) with a variety of linker structures (carbamate, amide, and sulfonamide). In competitive enzyme activity assays, it was revealed that the linker structures significantly affected the inhibitory activity against and selectivity for MMP-12. Compound 1, with carbamate linker, demonstrated potent MMP-12 inhibitory activity (IC50?=?8.5?nM) compared to compound 2, with amide linker, and compound 3, with sulfonamide linker. Using bromo-substituted carbamate 13 as a radioiodination precursor, [125I]1 was successfully prepared to high radiochemical purity (over 98%) and good specific radioactivity (4.1?GBq/μmol). These results suggest that radioiodinated compound 1 is potent as a novel MMP-12-targeted probe.  相似文献   

15.
A series of analogues of the PPARγ ligand 15-deoxy-Δ12,14-PGJ2 have been synthesized by functionalization of a 5-alkyl-4-hydroxycyclopentenone core structure obtained by Piancatelli rearrangement of precursor furylcarbinol. Transient transactivation assays indicate that analogues 18 and 20 are selective nanomolar agonists of PPARγ. This subtype selectivity is lost in derivatives (23, 24) with an alkynyl (oct-1-yn) chain at the C3 position, although the cyclopentenone derivative with cis relative configuration (23) showed greater affinity for PPARα.  相似文献   

16.
A series of 2-pyridyl-substituted pyrazoles (16a–d, 17, 18, and 28a–e) and imidazoles (22 and 23) has been synthesized and evaluated for their ALK5 inhibitory activity in cell-based luciferase reporter assays. Among them, 3-(3-(6-methylpyridin-2-yl)-4-(quinolin-6-yl)-1H-pyrazole-1-carbothioamido)benzamide (28c) showed 96% and 93% inhibition at 0.1 μM in luciferase reporter assays using HaCaT cells transiently transfected with p3TP-luc reporter construct and ARE-luc reporter construct, respectively.  相似文献   

17.
Fluorescent Probes aimed at absorbing in the blue/green region of the spectrum and emitting in the green/red have been synthesized (as the form of dyads-pentads), studied by spectrofluorimetry, and used for cellular imaging. The synthesis of phthalocyanine-pyrene 1 was achieved by cyclotetramerization of pyrenyldicyanobenzene, whereas phthalocyanine-BODIPY 2c was synthesized by Sonogashira coupling between tetraiodophthalocyanine and meso-alkynylBODIPY. The standard four-steps BODIPY synthesis was applied to the BODIPY-pyrene dyad 3 starting from pyrenecarbaldehyde and dimethylpyrrole. 1H, 13C, 19F, 11BNMR, ICP, MS, and UV/Vis spectroscopic analyses demonstrated that 2c is a mixture of BODIPY-Pc conjugates corresponding to an average ratio of 2.5 BODIPY per Pc unit, where its bis, tris, tetrakis components could not be separated. Fluorescence emission studies (μM concentration in THF) showed that the design of the probes allowed excitation of their antenna (pyrene, BODIPY) in the blue/green region of the spectrum, and subsequent transfer to the acceptor platform (BODIPY, phthalocyanine) followed by its emission in the green/red (with up to 140–350?nm overall Stokes shifts). The fluorescent probes were used for cellular imaging of B16F10 melanoma cells upon solubilization in 1% DMSO containing RPMI or upon encapsulation in liposomes (injection method). Probes were used at 1–10?μM concentrations, cells were fixed with methanol and imaged by biphoton and/or confocal microscopy, showing that probes could achieve the staining of cells membranes and not the nucleus.  相似文献   

18.
Molecules designed for cell-specific imaging were studied, taking advantage of an enzyme–inhibitor interaction. 1-Deoxynojirimycin (DNJ) can be actively captured by cells which express the surface membrane protein α-glucosidase. New probes composed of DNJ for recognition linked to a fluorophore signal portion were prepared (DNJ-CF3 1, DNJ-Dans 2 and DNJ-DEAC 3). Docking simulations revealed that the inhibitors acarbose and miglitol and the inhibitor portion of the probes bind at the same position in the pocket of α-glucosidase (human-derived PDB: 3TON). The ability of probes 13 to detect the difference between HeLa cells (from human cervical cancer tissue), Neuro-2a cells (from a mouse neuroblastoma C1300 tumor), N1E-115 cells (from a mouse brain neuroblastoma C1300 tumor), A1 cells (from the astrocyte of a newborn mouse brain), and Caco-2 cells (from a human colon carcinoma) was evaluated, and cell-specific fluorescence imaging was possible for conjugate probes 1 and 2. Caco-2 cells treated with probes 1 and 2 showed blue and green fluorescence, respectively, from the cell membrane, and did not stain the Caco-2 cells inside. These results show that DNJ-CF3 1 and DNJ-Dans 2 recognize an α-glucosidase protein on the surface of Caco-2 cells. Probes 1 and 2 did not stain any part of the other cells. This cell-specific imaging strategy is applicable for a variety of therapeutic agents for many diseases.  相似文献   

19.
CXCR4 is involved in various diseases such as inflammation, tumor growth, and cancer metastasis through the interaction with its natural endogenous ligand, chemokine CXCL12. In an effort to develop imaging probes for CXCR4, we developed a novel small molecule CXCR4-targeted PET agent (compound 5) by combining our established benzenesulfonamide scaffold with a labeling component by virtue of click chemistry. 5 shows nanomolar affinity (IC50 = 6.9 nM) against a known CXCR4 antagonist (TN14003) and inhibits more than 65% chemotaxis at 10 nM in vitro assays. Radiofluorinated compound 5 ([18F]5) demonstrates a competitive cellular uptake against CXCL12 in a dose-dependent manner. Further, microPET images of [18F]5 exhibits preferential accumulation of radioactivity in the lesions of λ-carrageenan-induced paw edema, human head and neck cancer orthotopic xenograft, and metastatic lung cancer of each mouse model.  相似文献   

20.
Changes in pH resulting in modifications of charge can dramatically alter the folding and interaction of proteins. This article probes the effects of charge and hydrophobicity on the oligomerization of macrocyclic β-sheet peptides derived from residues 11–17 of IAPP (RLANFLV). Previous studies have shown that a macrocyclic β-sheet peptide containing this IAPP sequence (peptide 1Arg) does not form oligomers in aqueous solution at low millimolar concentrations. Replacing arginine with the uncharged isostere citrulline generates a homologue (peptide 1Cit) that forms a tetramer consisting of a sandwich of hydrogen-bonded dimers. The current study probes the role of charge and hydrophobicity by changing residue 11 to glutamic acid (peptide 1Glu) and leucine (peptide 1Leu). Diffusion-ordered spectroscopy (DOSY) studies show that peptides 1Glu and 1Leu form tetramers in solution. NOESY studies confirm that both peptides form the same sandwich-like tetramer as peptide 1Cit. 1H NMR spectroscopy at various concentrations reveals that peptide 1Leu has the highest propensity to form tetramers. The effects of pH and charge on oligomerization are further probed by incorporating histidine at position 11 (peptide 1His). DOSY studies show that peptide 1His forms a tetramer at high pH. At low pH, peptide 1His forms a new species that has not been previously observed by our research group—a dimer. These studies demonstrate the importance of charge and hydrophobicity in the oligomerization of IAPP-derived peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号