首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundDiabetes mellitus is a chronic metabolic disease characterized by increased blood glucose levels. In order to lower blood glucose, it is important to stimulate glucose uptake and glycogen synthesis in the muscle. (E)-5-hydroxy-7-methoxy-3-(2′-hydroxybenzyl)-4-chromanone (HM-chromanone), a constituent isolated from Portulaca oleracea L., exhibits anti-diabetic effects; however, its mechanisms are not yet clearly understood on glucose uptake and glycogen synthesis in muscle cells.PurposeIn the present study, we examined the effects of HM-chromanone on glucose uptake into L6 skeletal muscle cells and elucidated the underlying mechanisms.MethodsThe effects of HM-chromanone on glucose uptake into L6 skeletal muscle cells were assessed by 2-Deoxyglucose uptake assay. Western blot analysis was carried out to elucidate the underlying molecular mechanisms.ResultsWe found that HM-chromanone promoted glucose uptake into L6 skeletal muscle cells in a dose-dependent manner. Moreover, HM-chromanone induced the phosphorylation of IRS-1Tyr612 and AKTSer473, and the activation of PI3K. HM-chromanone also stimulated the phosphorylation of AMPKThr172, AS160Thr642, TBC1D1Ser237, and ACC via the CaMKKβ pathway. Furthermore, HM-chromanone increased glycogen synthesis through the inactivation of glycogen synthase kinase 3 α/β.ConclusionThe results of this study indicate that HM-chromanone stimulates glucose uptake through the activation of the PI3K/AKT and CaMKKβ-AMPK pathways and glycogen synthesis via the GSK3 α/β pathway in L6 skeletal muscle cells.  相似文献   

2.
AMP-activated protein kinase (AMPK) activators are known to increase energy metabolism and to reduce body weight, as well as to improve glucose uptake. During for searching AMPK activators, a new anthraquinone, modasima A (10), along with eighteen known analogues (19 and 1119) were isolated from an ethanol extract of the roots of Morinda longissima Y. Z. Ruan (Rubiaceae). Using the fluorescent tagged glucose analogues, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-D-glucose (2-NBDG), insulin mimetics were screened with compounds 119 in 3T3-L1 adipocytes. Among them, compounds 2, 8 and 10 enhanced significantly glucose uptake into adipocytes and up-regulated the phosphorylated AMPK (Thr172) whereas the glucose uptake enhancing activities of compounds 2, 8 and 10 were abrogated by treatment of compound C, an AMPK inhibitor. Taken together, these anthraquinones showed the potential action as insulin mimetic to improve glucose uptake via activation of AMPK.  相似文献   

3.
5'-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the alpha(1)- and alpha(2)-isoforms of AMPK, with a corresponding increase in the rate of 3-O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3-O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.  相似文献   

4.
5.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is implicated as a key factor in controlling whole body homeostasis, including fatty acid oxidation and glucose uptake. We report that a synthetic structural isomer of dihydrocapsiate, isodihydrocapsiate (8-methylnonanoic acid 3-hydroxy-4-methoxy benzyl ester) improves type 2 diabetes by activating AMPK through the LKB1 pathway. In L6 myotube cells, phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and glucose uptake were significantly increased, whereas these effects were attenuated by an AMPK inhibitor, compound C. In addition, increased phosphorylation of AMPK and ACC by isodihydrocapsiate was significantly reduced by radicicol, an LKB1 destabilizer, suggesting that increased glucose uptake in L6 cells with isodihydrocapsiate treatment is predominantly accomplished by a LKB1-mediated AMPK activation pathway. Oral administration of isodihydrocapsiate to diabetic (db/db) mice reduced blood glucose levels by 40% after a 4-week treatment period. Our results support the development of isodihydrocapsiate as a potential therapeutic agent to target AMPK in type 2 diabetes.  相似文献   

6.
Zhang Q  Zhang Y  Feng H  Guo R  Jin L  Wan R  Wang L  Chen C  Li S 《PloS one》2011,6(8):e23556

Background

High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells.

Methods and Results

Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[3H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells.

Conclusions

HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.  相似文献   

7.
Piper longum is a well-known spice and traditional medicine. It was revealed to possess anti-diabetic activity, but few information about its active component and underlying mechanism could be available. In this study, retrofractamides A ( 1 ) and C ( 2 ) isolated from P. longum showed potent inhibitory activity against PTP1B. Therefore, the potential mechanism was predicted by network pharmacology and molecular docking. PI3K/AKT was obtained as the most remarkable pathway against type 2 diabetes mellitus (T2DM), and AKT1 and GSK3β were yielded as the top two core targets of retrofractamides A ( 1 ) and C ( 2 ). Molecular docking of compounds with AKT1 and GSK3β showed strong binding affinity between them. Additionally, cellular experiments with a L6 cell model was conducted to further verify the above predictions. Results indicated that retrofractamides A ( 1 ) and C ( 2 ) exerted anti-diabetic effect via activating PI3K/AKT pathway, and they promoted glucose consumption, glucose uptake, glycogen synthesis and glycolysis.  相似文献   

8.
Docosahexaenoic acid (DHA) is an endogenous ligand of G protein-coupled receptor 120 (GPR120). However, the mechanisms underlying DHA action are poorly understood. In this study, DHA stimulated glucose uptake in the skeletal muscles in an AMP-activated protein kinase (AMPK)-dependent manner. GPR120-mediated increase in intracellular Ca2+ was critical for DHA-mediated AMPK phosphorylation and glucose uptake. In addition, DHA stimulated GLUT4 translocation AMPK-dependently. Inhibition of AMPK and Ca2+/calmodulin-dependent protein kinase kinase blocked DHA-induced glucose uptake. DHA and GW9508, a GPR120 agonist, increased GPR120 expression. DHA-mediated glucose uptake was not observed in GPR120 knockdown conditions. DHA increased AMPK phosphorylation, glucose uptake, and intracellular Ca2+ concentration in primary cultured myoblasts. Taken together, these results indicated that the beneficial metabolic role of DHA was attributed to its ability to regulate glucose via the GPR120-mediated AMPK pathway in the skeletal muscles.  相似文献   

9.
10.
11.
A series of N-thiazole substituted arylacetamides were designed on the basis of metabolic mechanism of the aminothiazole fragment as glucokinase (GK) activators for the treatment of type 2 diabetes. Instead of introducing a substituent to block the metabolic sensitive C-5 position on the thiazole core directly, a wide variety of C-4 or both C-4 and C-5 substitutions were explored. Compound R-9k bearing an iso-propyl group as the C-4 substituent was found possessing the highest GK activation potency with an EC50 of 0.026 μM. This compound significantly increased both glucose uptake and glycogen synthesis in rat primary cultured hepatocytes. Moreover, single oral administration of compound R-9k exerted significant reduction of blood glucose levels in both ICR and ob/ob mice. These promising results indicated that compound R-9k is a potent orally active GK activator, and is warranted for further investigation as a new anti-diabetic treatment.  相似文献   

12.
13.
《Phytomedicine》2015,22(9):837-846
PurposeThe current study investigated the efficacy of Cyclocarya paliurus chloroform extract (CPEC) and its two specific triterpenoids (cyclocaric acid B and cyclocarioside H) on the regulation of glucose disposal and the underlying mechanisms in 3T3-L1 adipocytes.MethodsMice and adipocytes were stimulated by macrophages-derived conditioned medium (Mac-CM) to induce insulin resistance. CPEC was evaluated in mice for its ability by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). To investigate the hypoglycemic mechanisms of CPEC and its two triterpenoids, glucose uptake, AMP-activated protein kinase (AMPK) activation, inhibitor of NF-κB kinase β (IKKβ) phosphorylation and insulin signaling transduction were detected in 3T3-L1 adipocytes using 2-NBDG uptake assay and Western blot analysis.ResultsMac-CM, an inflammatory stimulus which induced the glucose and insulin intolerance, increased phosphorylation of IKKβ, reduced glucose uptake and impaired insulin sensitivity. CPEC and two triterpenoids improved glucose consumption and increased AMPK phosphorylation under basal and inflammatory conditions. Moreover, CPEC and its two triterpenoids not only enhanced glucose uptake in an insulin-independent manner, but also restored insulin-mediated protein kinase B (Akt) phosphorylation by reducing the activation of IKKβ and regulating insulin receptor substrate-1 (IRS-1) serine/tyrosine phosphorylation. These beneficial effects were attenuated by AMPK inhibitor compound C, implying that the effects may be associated with AMPK activation.ConclusionsCPEC and its two triterpenoids promoted glucose uptake in the absence of insulin, as well as ameliorated IRS-1/PI3K/Akt pathway by inhibiting inflammation. These effects were related to the regulation of AMPK activity.  相似文献   

14.
We evaluated and compared the antidiabetic potential and molecular mechanisms of 17 Cree plants’ ethanol extracts (EE) and hot water extracts (HWE) on glucose homeostasis in vitro and used metabolomics to seek links with the content of specific phytochemicals. Several EE of medical plants stimulated muscle glucose uptake and inhibited hepatic G6Pase activity. Some HWE partially or completely lost these antidiabetic activities in comparison to EE. Only R. groenlandicum retained similar potential between EE and HWE in both assays. In C2C12 muscle cells, EE of R. groenlandicum, A. incana and S. purpurea stimulated glucose uptake by activating AMP-activated protein kinase (AMPK) pathway and increasing glucose transporter type 4 (GLUT4) expression. In comparison to EE, HWE of R. groenlandicum exhibited similar activities; HWE of A. incana completely lost its effect on all parameters; interestingly, HWE of S. purpurea activated insulin pathway instead of AMPK pathway to increase glucose uptake. In the liver, for a subset of 5 plants, HWE and EE activated AMPK pathway whereas the EE and HWE of S. purpurea and K. angustifolia also activated insulin pathways. Quercetin-3-O-galactoside and quercetin 3-O-α-L-arabinopyranoside, were successfully identified by discriminant analysis as biomarkers of HWE plant extracts that stimulate glucose uptake in vitro. More importantly, the latter compound was not identified by previous bioassay-guided fractionation.  相似文献   

15.
16.
The role of muscarinic acetylcholine receptors (mAChRs) in regulating glucose uptake in L6 skeletal muscle cells was investigated. [3H]-2-Deoxyglucose uptake was increased in differentiated L6 cells by insulin, acetylcholine, oxotremorine-M and carbachol. mAChR-mediated glucose uptake was inhibited by the AMPK inhibitor Compound C. Whole cell radioligand binding using [3H]-N-methyl scopolamine chloride identified mAChRs in differentiated but not undifferentiated L6 cells and M3 mAChR mRNA was detected only in differentiated cells. M3 mAChRs are Gq-coupled, and cholinergic stimulation by the mAChR agonists acetylcholine, oxotremorine-M and carbachol increased Ca2+ in differentiated but not undifferentiated L6 cells. This was due to muscarinic but not nicotinic activation as responses were antagonised by the muscarinic antagonist atropine but not the nicotinic antagonist tubocurarine. Western blotting showed that both carbachol and the AMPK activator AICAR increased phosphorylation of the AMPKα subunit at Thr172, with responses to carbachol blocked by Compound C and the CaMKK inhibitor STO609 but not by the PI3K inhibitor wortmannin. AICAR-stimulated AMPK phosphorylation was not sensitive to STO-609, confirming that this compound inhibits CaMKK but not the classical AMPK kinase LKB1. The TAK1 inhibitor (5Z)-7-oxozeaenol and the Gi inhibitor pertussis toxin both failed to block AMPK phosphorylation in response to carbachol. Using CHO-K1 cells stably expressing each of the mAChR subtypes (M1–M4), it was determined that only the M1 and M3 mAChRs phosphorylate AMPK, confirming a Gq-dependent mechanism. This study demonstrates that activation of M3 mAChRs in L6 skeletal muscle cells stimulates glucose uptake via a CaMKK–AMPK-dependent mechanism, independent of the insulin-stimulated pathway.  相似文献   

17.
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.  相似文献   

18.

Background

The present study focuses on identifying and developing an anti-diabetic molecule from plant sources that would effectively combat insulin resistance through proper channeling of glucose metabolism involving glucose transport and storage.

Methods

Insulin-stimulated glucose uptake formed the basis for isolation of a bioactive molecule through column chromatography followed by its characterization using NMR and mass spectroscopic analysis. Mechanism of glucose transport and storage was evaluated based on the expression profiling of signaling molecules involved in the process.

Results

The study reports (i) the isolation of a bioactive compound 3β-taraxerol from the ethyl acetate extract (EAE) of the leaves of Mangifera indica (ii) the bioactive compound exhibited insulin-stimulated glucose uptake through translocation and activation of the glucose transporter (GLUT4) in an IRTK and PI3K dependent fashion. (iii) the fate of glucose following insulin-stimulated glucose uptake was ascertained through glycogen synthesis assay that involved the activation of PKB and suppression of GSK3β.

General significance

This study demonstrates the dual activity of 3β-taraxerol and the ethyl acetate extract of Mangifera indica as a glucose transport activator and stimulator of glycogen synthesis. 3β-taraxerol can be validated as a potent candidate for managing the hyperglycemic state.  相似文献   

19.
AMP-activated protein kinase (AMPK) is a serine-threonine kinase that regulates cellular metabolism and has an essential role in activating glucose transport during hypoxia and ischemia. The mechanisms responsible for AMPK stimulation of glucose transport are uncertain, but may involve interaction with other signaling pathways or direct effects on GLUT vesicular trafficking. One potential downstream mediator of AMPK signaling is the nitric oxide pathway. The aim of this study was to examine the extent to which AMPK mediates glucose transport through activation of the nitric oxide (NO)-signaling pathway in isolated heart muscles. Incubation with 1 mM 5-amino-4-imidazole-1-beta-carboxamide ribofuranoside (AICAR) activated AMPK (P < 0.01) and stimulated glucose uptake (P < 0.05) and translocation of the cardiomyocyte glucose transporter GLUT4 to the cell surface (P < 0.05). AICAR treatment increased phosphorylation of endothelial NO synthase (eNOS) approximately 1.8-fold (P < 0.05). eNOS, but not neuronal NOS, coimmunoprecipitated with both the alpha(2) and alpha(1) AMPK catalytic subunits in heart muscle. NO donors also increased glucose uptake and GLUT4 translocation (P < 0.05). Inhibition of NOS with N(omega)-nitro-l-arginine and N(omega)-methyl-l-arginine reduced AICAR-stimulated glucose uptake by 21 +/- 3% (P < 0.05) and 25 +/- 4% (P < 0.05), respectively. Inhibition of guanylate cyclase with ODQ and LY-83583 reduced AICAR-stimulated glucose uptake by 31 +/- 4% (P < 0.05) and 22 +/- 3% (P < 0.05), respectively, as well as GLUT4 translocation to the cell surface (P < 0.05). Taken together, these results indicate that activation of the NO-guanylate cyclase pathway contributes to, but is not the sole mediator of, AMPK stimulation of glucose uptake and GLUT4 translocation in heart muscle.  相似文献   

20.
Caffeic acid phenethyl ester (CAPE), a flavonoid-like compound, is one of the major components of honeybee propolis. In the present study, we investigated the metabolic effects of CAPE in skeletal muscle cells and found that CAPE stimulated glucose uptake in differentiated L6 rat myoblast cells and also activated AMPK (AMP-activated protein kinase). In addition, the inhibition of AMPK blocked CAPE-induced glucose uptake, and CAPE activated the Akt pathway in a PI3K (phosphoinositide 3-kinase)-dependent manner. Furthermore, CAPE enhanced both insulin-mediated Akt activation and glucose uptake. In summary, our results suggest that CAPE may have beneficial roles in glucose metabolism via stimulation of the AMPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号