首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study attempts to compare the signal-to-noise ratio (SNR) of the 40 mm High-Temperature Superconducting (HTS) surface resonator at 77 K and the 35 mm commercial quadrature (QD) surface resonator at 300 K in a 3 Tesla (T) MRI imager. To aquire images for the comparison, we implemented a phantom experiment using the 40 mm diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) HTS surface resonator, the 35 mm commercial QD surface resonator and the 40 mm professionally-made copper surface resonator. The HTS surface resonator at 77 K provided a 1.43-fold SNR gain over the QD surface resonator at 300 K and provided a 3.84-fold SNR gain over the professionally-made copper surface resonator at 300 K on phantom images. The results agree with the predictions, and the difference between the predicted SNR gains and measured SNR gains is 1%. Although the geometry of the HTS surface resonator is different from the QD surface resonator, its SNR is still higher. The results demonstrate that a higher image quality can be obtained with the HTS surface resonator at 77 K. With the HTS surface resonator, the SNR can be improved, suggesting that the HTS surface resonator is a potentially helpful diagnostic tool for MRI imaging in various applications.  相似文献   

2.
In many applications, a cloaked resonator is highly desired, which can harvest and maximize the energy within the resonator without being detected. This paper presents the resonator cloaking achieved by topology optimization-based inverse design methodology. The resonator cloaking is inversely designed by solving the topology optimization problem with minimizing the ratio of the scattering field energy outside the cloak and the cloaked resonating field energy. By inversely designing the resonator cloaking with relative permittivity 2 for both the resonator and cloak, the topology optimization-based inverse design methodology is demonstrated, where the incident angle sensitivity is considered to derive incident angle insensitive design. Then, the proposed methodology is applied for the cases with resonator and cloak materials chosen from dielectrics with low, moderate and high permittivity, respectively. The derived results demonstrate that the resonator cloaking can be categorized into three types, which are the Fabry-Pérot resonance cloaking, Mie resonance cloaking and hybrid resonance cloaking.  相似文献   

3.
Lin IT  Yang HC  Chen JH 《PloS one》2012,7(4):e33207
High temperature superconducting (HTS) surface resonators have been used as a low loss RF receiver resonator for improving magnetic resonance imaging image quality. However, the application of HTS surface resonators is significantly limited by their filling factor. To maximize the filling factor, it is desirable to have the RF resonator wrapped around the sample so that more nuclear magnetic dipoles can contribute to the signal. In this study, a whole new Bi(2)Sr(2)Ca(2)Cu(2)O(3) (Bi-2223) superconducting saddle resonator (width of 5 cm and length of 8 cm) was designed for the magnetic resonance image of a mouse's whole body in Bruker 3 T MRI system. The experiment was conducted with a professionally-made copper saddle resonator and a Bi-2223 saddle resonator to show the difference. Signal-to-noise ratio (SNR) with the HTS saddle resonator at 77 K was 2.1 and 2 folds higher than that of the copper saddle resonator at 300 K for a phantom and an in-vivo mice whole body imaging. Testing results were in accordance with predicted ones, and the difference between the predicted SNR gains and measured SNR gains were 2.4%~2.7%. In summary, with this HTS saddle system, a mouse's whole body can be imaged in one scan and could reach a high SNR due to a 2 folds SNR gain over the professionally-made prototype of copper saddle resonator at 300 K. The use of HTS saddle resonator not only improves SNR but also enables a mouse's whole body screen in one scan.  相似文献   

4.
We propose a plasmonic filter with a notch located along a rectangular resonator. The finite difference time domain method is utilized to investigate and analyze the transmission characteristics of the filter. Results reveal that the introduction of the notch affects the first and second resonant modes of the resonator in different manners due to different magnetic field distributions inside the resonator. The evolution of the transmission-peak wavelengths as a function of the notch position with the same total resonator length is given. Effects of geometrical parameters of the notch on peak wavelengths are also studied. The corresponding theoretical model of our proposal is discussed, which agrees well with simulation results.  相似文献   

5.
Wu  Chuan  Ding  Huafeng  Huang  Tianye  Wu  Xu  Chen  Bingwei  Ren  Kaixuan  Fu  Songnian 《Plasmonics (Norwell, Mass.)》2018,13(1):251-257
Plasmonics - A nanoscale structure which comprises metal-insulator-metal (MIM) waveguide, stub resonator, and hexagonal resonator is proposed to realize plasmon-induced transparency (PIT) response....  相似文献   

6.
A compact plasmonic coupled-resonator system, consisting of a stub resonator and baffles in the metal–insulator–metal waveguide, is numerically investigated with the finite element method. Simulations show that sharp and asymmetric response line-shapes can occur in the system. The asymmetric line-shapes in the transmission spectra depend on the relative positions of the resonant wavelengths between the single-stub resonator and the inner resonator constructed by the baffle and the stub resonator, while the other part of the transmission spectra (except the asymmetric part) maintains the spectral features of the structure constructed by the baffles. An analytic model and a relative phase analysis based on the scattering matrix theory are used to describe and explain this phenomenon. These sharp and asymmetric response line-shapes are important for improving the nano-plasmonic devices’ performances.  相似文献   

7.
Plasma Physics Reports - The possibility of excitation of oscillations in a Schumann resonator in the atmosphere of Mars is discussed. On Earth, the main source of energy in the resonator cavity...  相似文献   

8.
The probability of determining the effects of amoxicillin, which is one of β-lactam antibiotics, on microbial cells of Escherichia coli by the electroacoustic analysis method was shown for the first time. A piezoelectric resonator with a lateral electric field with a 1-mL liquid container was used as a biological sensor. It has been established that in the presence of amoxicillin the frequency dependence of the real and imaginary parts of the electrical impedance of a resonator loaded with a suspension of sensitive cells differs significantly from those of the resonator with a control of a microbial cell suspension without an antibiotic. When the resonator is loaded with the amoxicillin-resistant cell suspension, these dependencies are virtually the same. These results open prospects for the use of electroacoustic analysis methods to register the effect of β-lactam antibiotics on microbial cells and evaluate their antibacterial activity.  相似文献   

9.
At PSI (Paul Scherrer Institute), Switzerland, a superconducting cyclotron called “COMET” delivers proton beam of 250 MeV pulsed at 72.85 MHz for proton radiation therapy. Measuring proton beam currents (0.1–10nA) is of crucial importance for the treatment safety and is usually performed with invasive monitors such as ionisation chambers (ICs) which degrade the beam quality. A new non-invasive beam current monitor working on the principle of electromagnetic resonance is built to replace ICs in order to preserve the beam quality delivered. The fundamental resonance frequency of the resonator is tuned to 145.7 MHz, which is the second harmonic of the pulse rate, so it provides signals proportional to beam current. The cavity resonator installed in the beamline of the COMET is designed to measure beam currents for the energy range 238–70 MeV. Good agreement is reached between expected and measured resonator response over the energy range of interest. The resonator can deliver beam current information down to 0.15 nA for a measurement integration time of 1 s. The cavity resonator might be applied serving as a safety monitor to trigger interlocks within the existing domain of proton radiation therapy. Low beam currents limit the abilities to detect sufficiently, however, with the potential implementation of FLASH proton therapy, the application of cavity resonator as an online beam-monitoring device is feasible.  相似文献   

10.
We report an analytical method using a thin film electro-acoustic resonator for the detection of organophosphorus pesticides. The acetylcholinesterase (AChE) enzyme was immobilized on the surface of the resonator. In the presence of organophosphorus compounds, the degree of inhibitory effect of organophosphorus compounds on the AChE activity and the concentration of pesticides were detected in real time by measuring the frequency shift of the resonator. The proposed device has a remarkably low detection limit of 1.8×10(-11)M and obvious advantages such as small size, simple operation, and integrated circuit compatibility, providing a promising tool for pesticide analysis.  相似文献   

11.
A high sensitive plasmonic refractive index sensor based on metal-insulator-metal (MIM) waveguides with embedding metallic nano-rods in racetrack resonator has been proposed. The refractive index changes of the dielectric material inside the resonator together with temperature changes can be acquired from the detection of the resonance wavelength, based on their linear relationship. With optimum design and considering a tradeoff among detected power, structure size, and sensitivity, the finite difference time domain simulations show that the refractive index and temperature sensitivity values can be obtained as high as 2610 nm per refractive index unit (RIU) and 1.03 nm/°C, respectively. In addition, resonance wavelengths of resonator are obtained experimentally by using the resonant conditions. The effects of nano-rods radius and refractive index of racetrack resonator are studied on the sensing spectra, as well. The proposed structure with such high sensitivity will be useful in optical communications that can provide a new possibility for designing compact and high-performance plasmonic devices.  相似文献   

12.
Sato K  Kodama D  Naka Y  Anzai J 《Biomacromolecules》2006,7(12):3302-3305
A layer-by-layer assembly composed of avidin and 2-iminobiotin-labeled poly(ethyleneimine) (ib-PEI) was prepared on the surface of a platinum (Pt) film-coated quartz resonator, and an electrochemically induced disintegration of the avidin-ib-PEI assembly was studied using a quartz crystal microbalance. The resonance frequency of a five-bilayer (avidin-ib-PEI)5 film-coated quartz resonator was increased upon application of an electric potential to the Pt layer of the quartz resonator, suggesting that the mass on the quartz resonator was decreased as a result of disintegration of the (avidin-ib-PEI)5 film, due to a pH change in the vicinity of the surface of the Pt-coated quartz resonator. It may be that the (avidin-ib-PEI)5 film assembly was decomposed by acidification of the local pH on the surface of the Pt layer, which in turn was induced through electrolysis of water on Pt, because ib-PEI forms complexes with avidin only in basic media. In pH 9 solution, the (avidin-ib-PEI)5 film was decomposed under the influence of an applied potential of 0.6-1.0 V versus Ag/AgCl. The (avidin-ib-PEI)5 film was decomposed almost completely within a minute in a low concentration buffer (1 mM, pH 9), while the decomposition was slower in 10 and 100 mM buffer solutions at the same pH. The decomposition of the assembly was rapid when the electrode potential was applied in pH 9 solutions, while the response was relatively slow in pH 10 and 11 solutions. All the results are rationalized on the basis of an electrochemically induced acidification of the local environment around the (avidin-ib-PEI)5 film on the Pt layer.  相似文献   

13.
The interaction between polyclonal antibodies and Azospirillum brasilense Sp7 cells was studied using a resonator with lateral electric field. To this end, specific polyclonal rabbit antibodies against the O-antigen epitopes of the strain A. brasilense Sp7 were obtained and the possibility of their application for detection of microbial cells using a piezoelectric resonator with lateral electric field was shown. It was established that frequency dependences of the real and imaginary parts of electrical impedance of such a resonator loaded with the suspension of A. brasilense Sp7 cells and antibodies substantially differed from those of the resonator with the control suspension of cells without antibodies. It was shown that the obtained antibodies interacted with azospirilla cells, and the marker was accumulated all over the cell surface. The limit of possible detection of microbial cells during their interaction with antibodies was found to be 104 cells/mL. Detection of A. brasilense Sp7 cells using antibodies proved to be possible in the presence of foreign bacteria. The presented results demonstrate the possibility of recording the interaction between microbial cells and antibodies and developing a biosensor for quantitative detection of microbial cells.  相似文献   

14.
The generation of ion-cyclotron radiation in a plasma resonator formed by an RF discharge in a linear mirror magnetic confinement system is revealed and investigated. It is shown that the experimental setup makes it possible to study the composition of a multicomponent discharge plasma and to detect multiply charged ions. Collisional losses in such a resonator are estimated, and the pressure range within which the growth rate of the ion-cyclotron instability substantially exceeds the collisional damping rate is determined.  相似文献   

15.
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.  相似文献   

16.
The phage mini-antibodies to bacterial cells of strain Azospirillum brasilense Sp245 were obtained and the possibility of using them for detection of microbial cells by means of a lateral field excited piezoelectric resonator was studied. It has been found that the frequency dependencies of the real and imaginary parts of the electrical impedance of the resonator loaded by the cell suspension A. brasilense Sp245 with the mini-antibodies, significantly differ from those of the resonator with the control cell suspension without mini-antibodies. The concentration limit of possible determination of the microbial cells in their interaction with the mini-antibodies is equal to 10(3) cells/ml. It has been ascertained that detection of A. brasilense Sp245 cells using the mini-antibodies is possible even in the presence of other cultures, for example, E. coli BL-Ril and A. brasilense Sp7 cells. Therefore, it has been shown for the first time that detection of microbial cells by an electro-acoustic sensor is feasible.  相似文献   

17.
A plasmonic refractive index sensor based on electromagnetically induced transparency (EIT) composed of a metal-insulator-metal (MIM) waveguide with stub resonators and a ring resonator is presented. The transmission properties and the refractive index sensitivity are numerically studied with the finite element method (FEM). The results revealed an EIT-like transmission spectrum with an asymmetric line profile and a refractive index sensitivity of 1057 nm/RIU are obtained. The coupled mode theory (CMT) based on transmission line theory is adopted to illustrate the EIT-like phenomenon. Multiple EIT-like peaks are observed in the transmission spectrum of the derived structures based on the MIM waveguide with stub resonator coupled ring resonator. To analyze the multiple EIT-like modes of the derived structures, the H z field distribution is calculated. In addition, the effect of the structural parameters on the EIT-like effect is also studied. These results provide a new method for the dynamic control of light in the nanoscale.  相似文献   

18.
A new scheme to achieve a simple design of triple-band metamaterial absorber at terahertz frequency is presented. In this scheme, we employ a traditional sandwich structure, which is consisted of a metallic resonator and an appropriate thickness of the dielectric layer backed with an opaque metallic board, as the research object. Three strong but discrete resonance peaks with the narrow bandwidths and high absorptivities are realized. The combination of the dipolar resonance, LC (inductor-capacitor circuit) resonance, and the surface resonance of the metallic resonator determines the triple-band absorption. Numerical results also show that the frequencies of the three absorption bands and the number of the resonance peaks can be effectively tuned by adjusting or changing the geometric parameters of the metallic resonator. Moreover, we present a simple design of five-band terahertz absorber by further optimizing the sizes of the metallic elements in the top layer of the metamaterial. The design of the unit structures will assist in designing innovative absorbing devices for spectroscopy imaging, detection, and sensing.  相似文献   

19.
This work presents a bandstop plasmonic filter that comprises a metal–insulator–metal (MIM) waveguide and a few pairs of strip cavities that are embedded in the metal. The strip cavity acts as both a near-field antenna and an MIM resonator. The central frequency and the bandwidth of the forbidden band are inversely related to the cavity length and the cavity-to-waveguide distance, respectively. These results correlate with the predictions of the ring resonator model but only under the resonant condition that double the effective length of cavity is an integer multiple of the guiding wavelength in the cavity.  相似文献   

20.
Cavity optomechanics experiments that parametrically couple the phonon modes and photon modes have been investigated in various optical systems including microresonators. However, because of the increased acoustic radiative losses during direct liquid immersion of optomechanical devices, almost all published optomechanical experiments have been performed in solid phase. This paper discusses a recently introduced hollow microfluidic optomechanical resonator. Detailed methodology is provided to fabricate these ultra-high-Q microfluidic resonators, perform optomechanical testing, and measure radiation pressure-driven breathing mode and SBS-driven whispering gallery mode parametric vibrations. By confining liquids inside the capillary resonator, high mechanical- and optical- quality factors are simultaneously maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号