首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we investigate the ability of the gold nanorods (GNRs) to detect some proteins and demonstrate their potential to be used as plasmonic nanobiosensors. The GNRs were synthesized by a two-step seed-mediated growth procedure at room temperature. Firstly, a seed solution of gold nanoparticles was synthesized in the presence of cetyltrimethylammonium bromide surfactant and, subsequently, incorporated with appropriate amount of silver nitrate and tetrachloroauric acid solutions to grow GNRs with average length of 50 nm and diameter of 14 nm. We study the interaction of GNRs with proteins whose molecular weight varies from 6.5 up to 75 kDa. We investigate the resulting solutions by means of UV–vis absorption spectroscopy to determine the effect of the proteins characteristics on the shift of the localized surface plasmon resonance (LSPR). We show that for the case when proteins are in large excess compared to the GNRs concentration, whatever the protein is, the LSPR shift is constant and does not depend on the protein molecular weight. Moreover, we have been able to demonstrate that the sensitivity of such LSPR sensor is around 10–9 M/nm on a concentration range from 10–10 to 10–8 M. Some comparison with finite-difference time-domain simulations have also shown that the number of proteins adsorbed at the GNRs surface is around 40.  相似文献   

2.
3.
Plasmonics - Detection of diphtheria toxin (DT) which is produced by Corynebacterium diphtheria, a zoonotic pathogen and a leading cause of diphtheria, is the critical step in the clinical...  相似文献   

4.
Bacillus anthracis, the causative agent of anthrax is one of the most important biological warfare agents. In this study, surface plasmon resonance (SPR) technology was used for indirect detection of B. anthracis by detecting protective antigen (PA), a common toxin produced by all live B. anthracis bacteria. For development of biosensor, a monoclonal antibody raised against B. anthracis PA was immobilized on carboxymethyldextran modified gold chip and its interaction with PA was characterized in situ by SPR and electrochemical impedance spectroscopy. By using kinetic evaluation software, KD (equilibrium constant) and Bmax (maximum binding capacity of analyte) were found to be 20 fM and 18.74, respectively. The change in Gibb’s free energy (∆G = −78.04 kJ/mol) confirmed the spontaneous interaction between antigen and antibody. The assay could detect 12 fM purified PA. When anthrax spores spiked soil samples were enriched, PA produced in the sample containing even a single spore of B. anthracis could be detected by SPR. PA being produced only by the vegetative cells of B. anthracis, confirms indirectly the presence of B. anthracis in the samples. The proposed method can be a very useful tool for screening and confirmation of anthrax suspected environmental samples during a bio-warfare like situation.  相似文献   

5.
Chicken is one of the most popular meat products in the world. Salmonella Typhimurium is a common foodbome pathogens associated with the processing of poultry. An optical Surface Plasmon Resonance (SPR) biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The Spreeta biosensor kits were used to detect Salmonella Typhimurium on chicken carcass successfully. A taste sensor like electronic tongue or biosensors was used to basically "taste" the object and differentiated one object from the other with different taste sensor signatures. The surface plasmon resonance biosensor has potential for use in rapid, real-time detection and identification of bacteria, and to study the interaction of organisms with dif- ferent antisera or other molecular species. The selectivity of the SPR biosensor was assayed using a series of antibody con- centrations and dilution series of the organism. The SPR biosensor showed promising to detect the existence of Salmonella Typhimurium at 1 x 106 CFU/ml. Initial results show that the SPR biosensor has the potential for its application in pathogenic bacteria monitoring. However, more tests need to be done to confirm the detection limitation.  相似文献   

6.
It is demonstrated that the sensitivity of surface plasmon resonance phase-interrogation biosensor can be enhanced by using silver nanoparticles. Silver nanoparticles were fabricated on silver films by using thermal evaporation. Sizes of silver nanoparticles on silver thin film can be tuned by controlling the deposition parameters of thermal evaporation. By using surface plasmon resonance heterodyne interferometey to measure the phase difference between the p and s polarization of incident light, we have demonstrated that sensitivity of glucose detection down to the order of 10−8 refractive index units can be obtained.  相似文献   

7.
基于表面等离子共振的适配体传感器是利用适配体进行高特异性、高灵敏度、高通量检测的新型生物传感器。我们在简要阐述适配体的筛选方法、偶联技术及适配体传感器工作原理的基础上,结合最新的研究结果,对基于表面等离子共振的适配体传感器在生物活性小分子检测、传染病检测、肿瘤标志物检测、食品安全监测等方面的应用研究进展进行了综述。  相似文献   

8.
Protein-protein interactions are pivotal to most, if not all, physiological processes, and understanding the nature of such interactions is a central step in biological research. Surface Plasmon Resonance (SPR) is a sensitive detection technique for label-free study of bio-molecular interactions in real time. In a typical SPR experiment, one component (usually a protein, termed ''ligand'') is immobilized onto a sensor chip surface, while the other (the ''analyte'') is free in solution and is injected over the surface. Association and dissociation of the analyte from the ligand are measured and plotted in real time on a graph called a sensogram, from which pre-equilibrium and equilibrium data is derived. Being label-free, consuming low amounts of material, and providing pre-equilibrium kinetic data, often makes SPR the method of choice when studying dynamics of protein interactions. However, one has to keep in mind that due to the method''s high sensitivity, the data obtained needs to be carefully analyzed, and supported by other biochemical methods. SPR is particularly suitable for studying membrane proteins since it consumes small amounts of purified material, and is compatible with lipids and detergents. This protocol describes an SPR experiment characterizing the kinetic properties of the interaction between a membrane protein (an ABC transporter) and a soluble protein (the transporter''s cognate substrate binding protein).  相似文献   

9.
While an array of technologies based on radioactive labels or luminescent tags are dominant in modern biomedical research on DNA, surface plasmon resonance (SPR) and SPR imaging measurements are sensitive, rapid, and label-free. This review summarizes recent advances in the development of SPR and coupled techniques and their applications in DNA research, including the gene analysis at trace levels and studies of DNA–protein and DNA–drug interactions.  相似文献   

10.
11.
Environmental surveillance for the presence of Vibrio cholerae O1 is of utmost importance for the effective public health protection of cholera. In the present study, an amperometric immunosensor was developed for detection of Vibrio cholerae in environmental samples by using disposable screen-printed electrodes (SPEs). For this purpose, the experiments done include fabrication of SPEs by using carbon ink, electrochemical characterization of electrodes, optimization of dilutions of antibodies and immobilization of antibody. V. cholerae O1 bacteria were spiked in various environmental water samples in known number. The seeded samples were filtered through a 0.22 μm membrane, and the filters enriched in alkaline peptone water for 6 h and then used directly for detection of V. cholerae using the immunosensor. The immunosensor could detect as few as 8 c.f.u./ml in hand-pump water (ground water) and seawater, and 80 c.f.u./ml in sewer water and tap water. The total time taken in this detection assay was 55 min. Thus, the proposed method is simple and can be used for environmental monitoring of V.␣cholerae.  相似文献   

12.
Detection of an OmpA-like protein in Vibrio cholerae   总被引:1,自引:0,他引:1  
Abstract Rhodopseudomonas marina/agilis was enriched from a natural microbial mat by using conditions that favor growth of anoxygenic photoheterotrophs able to fix N2 rapidly. The isolated bacterium grows more readily on fructose or mannitol than on organic acid carbon sources, requires preformed biotin and thiamine as growth factors, and is extraordinarily motile; growth occurs up to a temperature of approx. 44°C. The photosynthetic pigments of R. marina/agilis are housed in intracytoplasmic lamellar membranes which show the in vivo absorbance characteristics of bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series. In common with other non-sulfur purple bacteria, R. marina/agilis can also grow as an aerobic heterotroph in darkness. Under these conditions, photopigment synthesis is severely repressed. R. marina/agilis requires 1–5% NaCl for optimal growth, and cells grown on N2 showed nitrogenase activity of >1000 nmol acetylene reduced h/mg dry wt.  相似文献   

13.
Epidemiological studies suggest that elevated plasma fibrinogen levels are associated with an increased risk of cardiovascular disorders. Normal fibrinogen level is in the range of 1.5-4.5mg/mL, depending upon both genetic (intrinsic) and environmental (extrinsic) factors. An increase of 0.25mg/mL from the normal level can often be correlated with a high risk of cardiovascular disease. Thus, it is useful to monitor fibrinogen level in serum of a patient for clinical diagnosis. We report a regenerative biosensor that measures real-time fibrinogen levels in undiluted serum. The biosensor uses Surface Plasmon Resonance (SPR), highly sensitive optical technique. The biosensor does not use bio-receptors (i.e., antibodies, enzymes, DNA, etc.) unlike conventional biosensors, and deploys the nature of competitive adsorption of proteins to achieve selective detection of fibrinogen. We measured fibrinogen-spiked serum samples with a concentration of 1.5-4.5 mg/mL, and repeated six measurement trials to obtain statistical distribution of the measurements using the regeneration method of the sensing surface. The SPR biosensor has a sensitivity of 42 mDeg/(mg/mL) for a fibrinogen concentration in the range of 0.5-2.5 mg/mL, whereas it was hard to correlate the measurements to the spiked-fibrinogen samples of above 2.5 mg/mL.  相似文献   

14.
Plasmonics - Detection and monitoring of SO2 is important because it is a representative toxic gas in the atmospheric environment that is emitted from industrial and natural processes. Localized...  相似文献   

15.

E. coli O157:H7 is one of the most important pathogens in food-borne diseases and is the main cause of the pseudo pandemic development of hemorrhagic colitis and hemolytic uremic syndrome. Also E. coli O157:H7 is the most common serotype of Shiga-toxin-producing E. coli. Traditional methods for detecting E. coli O157:H7 are expensive, time-consuming, and less sensitive. A method with high sensitivity and high-resolution optical detection is utilizes the LSPR property of spherical gold nanoparticles (GNP). In this work, we constructed a novel nano-bio probe to detect E. coli O157:H7 by synthesizing citrate gold nanoparticle conjugated (non-covalent bond) with specific chicken anti-E. coli O157:H7 antibody (IgY) by changing the pH of the nanoparticles’ environment. UV-visible and DLS methods were used to confirm the bonding between the antibody and nanoparticles and the LSPR sensitivity of the nano-bio probe was evaluated by ELISA method. We could optically detect this bacterium in less than 2 h by measuring the LSPR band λ max shifts of GNPs. The sensitivity of this novel biosensor was determined by about 10 CFU/ml, using the LSPR property of spherical gold nanoparticles. So that, the LSPR λ max red shifted from 530 to 543 nm in presence of 10 CFU bacterium. In conclusion, this nano biosensor can be used to detect this important pathogen among the clinical specimens.

  相似文献   

16.
We compared coupling approaches of SPR to LC-MS and ProteinChip-based mass spectrometry (SELDI) as a means of identifying proteins captured on DNA surfaces. The approach we outline has the potential to allow multiple, quantitative analysis of macromolecular interactions followed by rapid mass spectrometry identification of retained material.  相似文献   

17.
In the present study, we report the first fiber optic glucose sensor utilizing localized surface plasmon resonance of metal nanoparticles. The fiber was bent in the form of a U-shaped probe for point detection and sensitivity enhancement. The probe was prepared by first attaching gold nanoparticles on the optical fiber core and then immobilizing glucose oxidase over it. The sensor operates in the intensity modulation scheme in which the absorbance is measured with respect to the changes in the glucose concentration. The presence of glucose in the vicinity of the sensing region changes the refractive index of the film due to the chemical reactions with glucose oxidase. The absorbance of the metal nanoparticle changes significantly due to local refractive index change. The fiber optic U-shaped probes of different bending radii were fabricated and it has been found that the probe with bending radius around 0.982?mm possesses the maximum sensitivity. The response of the sensor is fast and requires very small volume of sensing sample (??150???l) which makes it more suitable for commercialization and better than present commercial sensors, which require about 1.5?ml of blood for the detection of glucose.  相似文献   

18.
19.
We compared coupling approaches of SPR to LC-MS and ProteinChip™-based mass spectrometry (SELDI™) as a means of identifying proteins captured on DNA surfaces. The approach we outline has the potential to allow multiple, quantitative analysis of macromolecular interactions followed by rapid mass spectrometry identification of retained material.  相似文献   

20.
Pang  Kai  Dong  Wei  Zhang  Bing  Zhan  Shuyue  Wang  Xiaoping 《Plasmonics (Norwell, Mass.)》2016,11(4):1119-1128

We demonstrate that a designed bimetallic chip is capable of improving the performance of a surface plasmon resonance (SPR) sensor based on angular interrogation. Through a numerical simulation and a refractometry experiment, we prove that this bimetallic chip can effectively reduce the noise level by about a factor of 2 compared to the traditional SPR sensors that only use a single gold film. The bimetallic chip presents a lower refractive index resolution of 5.3 × 10−7 refractive index units. In addition, the enhancement of the electric field intensity at the surface of the configuration by a factor of 2 makes it possible to have a high sensitivity in a larger region, which promotes the biosensing applications of the chip. Through a simple and novel method for the detection of cadmium ions (Cd2+) based on the bimetallic configuration, a detection level for Cd2+ (0.01 μM or 1.12 ppb) can be realized, which compares favorably with similar studies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号