首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Peutz-Jeghers syndrome (PJS) is a hereditary disorder that predisposes an individual to benign and malignant tumors in multiple organ systems. Recently, the locus responsible for PJS was mapped genetically to the LKB1 gene, with a subsequent investigation proving that it is responsible for most cases of PJS. LKB1 encodes a nuclear serine/threonine protein kinase, and potential tumor-suppressing activity has been attributed to LKB1 kinase. However, how LKB1 exerts its tumor-suppressing function remains to be determined. In this report, we describe the identification of a putative human LKB1-interacting protein, FLIP1, using the yeast two-hybrid system. Two regions of the LKB1 sequence have been determined to be crucial for the interaction with FLIP1. FLIP1 encodes a protein of 429 amino acids with a predicted molecular weight of 47 kd. In contrast to LKB1, which is mainly nuclear, FLIP1 is a cytoplasmic protein, and its expression is ubiquitous in all human tissues examined to date. Interestingly, deletion of the 195 N- terminal amino acids allows FLIP1 to enter the nucleus, suggesting the presence of a regulatory mechanism through its N-terminus for nuclear entry. In addition, we found that ectopic expression of FLIP1 selectively blocks cytokine-induced NF-kappaB activation. The involvement of FLIP1 in the regulation of NF-kappaB activity may shed new light on the role of LKB1 in tumor suppression.  相似文献   

5.
6.
7.
Highlights? IKK can inhibit TNFα-induced apoptosis independently of NF-κB activation ? Inhibition of BAD constitutes the NF-κB-independent antiapoptotic axis of IKK ? IKK phosphorylates BAD at Ser26 and primes it for inactivation ? BAD inactivation coordinates with NF-κB activation to suppress TNFα-induced apoptosis  相似文献   

8.
9.
10.
Chemotherapeutic agents- and radiation therapy-induced NF-κB activation in cancer cells contributes to aggressive tumor growth and resistance to chemotherapy and ionizing radiation during cancer treatment. TAK1 has been shown to be required for genotoxic stress-induced NF-κB activation. However, whether TAK1 ubiquitination is involved in genotoxic stress-induced NF-κB activation remains unknown. Herein, we demonstrate that TAK1 ubiquitination plays an important role in the positive and negative regulation of doxorubicin (Dox)-induced NF-κB activation. We found that TAK1 was required for Dox-induced NF-κB activation. At the early stage of Dox treatment, Dox induced Lys63-linked TAK1 polyubiquitination at lysine 158 residue. USP4 inhibited Dox-induced TAK1 Lys63-linked polyubiquitination and knockdown of USP4 enhanced Dox-induced NF-κB activation. At the late stage of Dox treatment, Dox induced Lys48-linked TAK1 polyubiquitination to promote TAK1 degradation. ITCH inhibited Dox-induced NF-κB activation by promoting Lys48-linked TAK1 polyubiquitination and its subsequent degradation. Our study indicates that TAK1 ubiquitination plays critical roles in the regulation of Dox-induced NF-κB activation. Thus, intervention of TAK1 kinase activity or TAK1 Lys63-linked polyubiquitination pathways might greatly enhance the therapeutic efficacy of Dox.  相似文献   

11.
12.
13.
14.
Alloferon is a 13-amino acid peptide isolated from the bacteria-challenged larvae of the blow fly Calliphora vicina. The pharmaceutical value of the peptide has been well demonstrated by its capacity to stimulate NK cytotoxic activity and interferon (IFN) synthesis in animal and human models, as well as to enhance antiviral and antitumor activities in mice. Antiviral and the immunomodulatory effectiveness of alloferon have also been supported clinically proved in patients suffering with herpes simplex virus (HSV) and human papilloma virus (HPV) infections. To elucidate molecular response to alloferon treatment, we initially screened a model cell line in which alloferon enhanced IFN synthesis upon viral infection. Among the cell lines tested, Namalva was chosen for further proteomic analysis. Fluorescence difference gel electrophoresis (DIGE) revealed that the levels of a series of antioxidant proteins decreased after alloferon treatment, while at least three glycolytic enzymes and four heat-shock proteins were increased in their expression levels. Based on the result of our proteomic analysis, we speculated that alloferon may activate the NF-kappaB signaling pathway. IkappaB kinase (IKK) assay, Western blot analysis on IkappaBalpha and its phosphorylated form at Ser 32, and an NF-kappaB reporter assay verified our proteomics-driven hypothesis. Thus, our results suggest that alloferon potentiates immune cells by activating the NF-kappaB signaling pathway through regulation of redox potential. Since NF-kappaB activation is involved in IFN synthesis, our results provide further clues as to how the alloferon peptide may stimulate IFN synthesis.  相似文献   

15.
16.
Proteasome inhibitor MG132 blocks activation of NF-κB by preventing degradation of IκB. In this report, we propose an alternative mechanism by which MG132 inhibits cytokine-triggered NF-κB activation. We found that MG132 induced endoplasmic reticulum (ER) stress, and attenuation of ER stress blunted the suppressive effect of MG132 on NF-κB. Through ER stress, MG132 up-regulated C/EBPβ mRNA transiently and caused sustained accumulation of its translational products liver activating protein (LAP) and liver-enriched inhibitory protein (LIP), both of which were identified as suppressors of NF-κB. Our results disclosed a novel mechanism underlying inhibition of NF-κB by MG132.  相似文献   

17.
The nuclear factor kappa B (NF-κB) regulates genes that function in diverse cellular processes like inflammation, immunity and cell survival. The activation of NF-κB is tightly controlled and the deubiquitinase CYLD has emerged as a key negative regulator of NF-κB signalling. Optineurin, mutated in certain glaucomas and amyotrophic lateral sclerosis, is also a negative regulator of NF-κB activation. It competes with NEMO (NF-κB essential modulator) for binding to ubiquitinated RIP (receptor interacting protein) to prevent NF-κB activation. Recently we identified CYLD as optineurin-interacting protein. Here we have analysed the functional significance of interaction of optineurin with CYLD. Our results show that a glaucoma-associated mutant of optineurin, H486R, is altered in its interaction with CYLD. Unlike wild-type optineurin, the H486R mutant did not inhibit tumour necrosis factor α (TNFα)-induced NF-κB activation. CYLD mediated inhibition of TNFα-induced NF-κB activation was abrogated by expression of the H486R mutant. Upon knockdown of optineurin, CYLD was unable to inhibit TNFα-induced NF-κB activation and showed drastically reduced interaction with ubiquitinated RIP. The level of ubiquitinated RIP was increased in optineurin knockdown cells. Deubiquitination of RIP by over-expressed CYLD was abrogated in optineurin knockdown cells. These results suggest that optineurin regulates NF-κB activation by mediating interaction of CYLD with ubiquitinated RIP thus facilitating deubiquitination of RIP.  相似文献   

18.
Nuclear factor-kappaB (NF-κB) is critical for the expression of multiple genes involved in inflammatory responses and cellular survival. NF-κB is normally sequestered in the cytoplasm through interaction with an inhibitor of NF-κB (IκB), but inflammatory stimulation induces proteasomal degradation of IκB, followed by NF-κB nuclear translocation. The degradation of IκB is mediated by a SCF (Skp1-Cullin1-F-box protein)-type ubiquitin ligase complex that is post-translationaly modified by a ubiquitin-like molecule Nedd8. In this study, we report that BRCA1-associated protein 2 (Brap2) is a novel Nedd8-binding protein that interacts with SCF complex, and is involved in NF-κB translocation following TNF-α stimulation. We also found a putative neddylation site in Brap2 associated with NF-κB activity. Our findings suggest that Brap2 is a novel modulator that associates with SCF complex and controls TNF-α-induced NF-κB nuclear translocation.  相似文献   

19.
Lys63-linked polyubiquitination of transforming growth factor-β-activated kinase 1 (TAK1) has an important role in tumor necrosis factor-α (TNFα)-induced NF-κB activation. Using a functional genomic approach, we have identified ubiquitin-specific peptidase 4 (USP4) as a deubiquitinase for TAK1. USP4 deubiquitinates TAK1 in vitro and in vivo. TNFα induces association of USP4 with TAK1 to deubiquitinate TAK1 and downregulate TAK1-mediated NF-κB activation. Overexpression of USP4 wild type, but not deuibiquitinase-deficient C311A mutant, inhibits both TNFα- and TAK1/TAB1 co-overexpression-induced TAK1 polyubiquitination and NF-κB activation. Notably, knockdown of USP4 in HeLa cells enhances TNFα-induced TAK1 polyubiquitination, IκB kinase phosphorylation, IκBα phosphorylation and ubiquitination, as well as NF-κB-dependent gene expression. Moreover, USP4 negatively regulates IL-1β-, LPS- and TGFβ-induced NF-κB activation. Together, our results demonstrate that USP4 serves as a critical control to downregulate TNFα-induced NF-κB activation through deubiquitinating TAK1.  相似文献   

20.
Sirtuin 7 (SIRT7) is an NAD+-dependent lysine deacetylase that regulates diverse biological processes. We recently observed that SIRT7 deficiency suppresses the nuclear accumulation of p65, which is a component of nuclear factor kappa B. However, the underlying molecular mechanism remains elusive. In this study, we demonstrated that SIRT7 interacts with a small GTPase, Ras-related nuclear antigen (Ran), and deacetylates Ran at K37. The nuclear export of p65 was facilitated in SIRT7-deficient fibroblast cells, while the nuclear export was inhibited in SIRT7-deficient cells expressing K37R-Ran (deacetylation-mimicking mutant). Additionally, the nuclear export of p65 in wild-type fibroblast cells was promoted by K37Q-Ran (acetylation-mimicking mutant). K37Q-Ran exhibited an increased ability to bind to chromosome region maintenance 1 (CRM1), which is a major nuclear receptor that mediates the export of cargo proteins, and enhanced the binding between p65 and CRM1. These data suggest that SIRT7 is a lysine deacetylase that targets the K37 residue of Ran to suppress the nuclear export of p65.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号