首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection sensitivities of gap plasmons in gold nanoslit arrays are studied and compared with surface plasmons on outside surface. The nanoslit arrays were fabricated in a 130 nm-thick gold film with various slit widths. For transverse-magnetic (TM) incident wave, the 600 nm-period nanoslit array shows two distinguishable transmission peaks corresponding to the resonances of gap plasmons and surface plasmons, respectively. The surface sensitivities for both modes were compared by coating thin SiO(2) film and different biomolecules on the nanoslit arrays. Our experimental results verify gap plasmons are more sensitive than conventional surface plasmons. Its detection sensitivity increases with the decrease of slit width. The gap plasmon is one order of magnitude sensitive than the surface plasmon for slit widths smaller than 30 nm. We attribute this high sensitivity to the large overlap between biomolecules and nanometer-sized gap plasmons.  相似文献   

2.

In this paper, a non-structured graphene sheet loaded with a sinusoidal-patterned dielectric is introduced as an ultra-wideband metamaterial absorber in terahertz regime. Regardless of conventional structures with multilayered-graphene, a single layer sheet of non-structured graphene is used whereas the proposed structure benefits from dielectric width modulation and cavity method in order to excite continuous graphene plasmon resonances. The structure comprises four layers that two Fabry-Perot cavity mirrors are constructed by upper sinusoidal-patterned dielectric and a gold film. Full wave simulation results demonstrate that a broadband over 90% absorption with absolute bandwidth of 6.58 THz and central frequency of 3.97 THz is achieved under normal TE/TM incident plane wave. The designed structure yields 166% relative bandwidth. According to the symmetric configuration, the absorption spectra of mentioned polarizations are thoroughly close to each other resulting to a polarization insensitive structure. The stability of bandwidth and absorbance of the structure versus angle of incidence, θ, up to 35°/65° for TM/TE polarizations, respectively, and azimuth angle, φ, shows an interesting capability for utilization as detectors and sensors. The simple geometry of utilized graphene layer results in easy fabrication. The designed structure has wideband absorption in THz regime. Moreover, it is more compact than conventional broadband THz absorbers.

  相似文献   

3.
Motivated by the recent nanophotonic community, in this work, we address the behavior of quantized charge-density fluctuations of doped and gated semiconductor armchair-type graphene nanoribbons within the tight-binding model and the Green’s function technique. In particular, we study the behavior of frequency-dependent susceptibility, when the system is exposed to photons or electrons. Injecting electrons by doping or ejecting ones by gating lead to different treatments in response function. Doping offers new collective modes due to added states between the valence and conduction bands (provided by the density of states) corresponding to intraband transitions, while gating distributes intraband modes. The results show that both ribbon width and doping concentrations affect the intraband transitions in electro-optical devices. Another remarkable point is the strong sensitivity of intraband plasmons to the direction of incoming photons or electrons. We found that the susceptibility of doped nanoribbons vanishes at perpendicular angles due to the distribution of intraband modes.  相似文献   

4.

The tunneling of surface plasmon waves between two slabs of dielectric prisms superposed on the metal surface is studied. The prism with the incident surface plasmon wave is superposed by a stack of graphene sheets. The analytical theory is built to connect the Fermi energy of graphene with the Goos-Hänchen shift of the transmitted surface plasmon waves. The obtained results may be useful for developing integral switching devices on the basis of surface plasmon polaritons.

  相似文献   

5.

Ring modes with large wave vectors cannot be easily excited on a single disk by the plane wave illumination with the polarization parallel to the disk interface. In this work, we show that special antisymmetric ring gap modes on the surface of the disk in close proximity to the metallic thin film can be excited in the visible light region of the electromagnetic spectrum. In the presence of the film, the strong plasmon interaction between disk and film causes ring gap modes to have lower energies and be more easily excited. We apply the plasmon hybridization method to illustrate the ring gap modes arising from the interaction between the localized disk plasmons and the continuum surface plasmons. The calculated hybridization data show good agreement with the results of finite element simulations. The excitation of ring gap modes provides further insight into the strong coupling of plasmons and the design of novel nanostructures.

  相似文献   

6.
We study analytically propagating surface plasmon modes of a Kerr slab sandwiched between two graphene layers. We show that some of the modes that propagate forward at low field intensities start propagating with negative slope of dispersion and positive flux of energy (fast-light surface plasmons) when the field intensity becomes high. We also discover that our structure supports an additional branch of low-intensity fast-light guided modes. The possibility of dynamically switching between the forward and the fast-light plasmon modes by changing the intensity of the excitation light or the chemical potential of the graphene layers opens up wide opportunities for controlling light with light and electrical signals on the nanoscale.  相似文献   

7.
Wang  Famei  Sun  Zhijie  Liu  Chao  Sun  Tao  Chu  Paul K. 《Plasmonics (Norwell, Mass.)》2017,12(6):1847-1853

A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance (PCF-SPR) biosensor with a silver-graphene layer is described. The silver layer with a graphene coating not only prevents oxidation of the silver layer but also can improve the silver sensing performance due to the large surface-to-volume ratio of graphene. The dual-core PCF-SPR biosensor is numerically analyzed by the finite-element method (FEM). An average spectral sensitivity of 4350 nm/refractive index unit (RIU) in the sensing range between 1.39 and 1.42 and maximum spectral sensitivity of 10,000 nm/RIU in the sensing range between 1.43 and 1.46 are obtained, corresponding to a high resolution of 1 × 10−6 RIU as a biosensor. Our analysis shows that the optical spectra of the PCF-SPR biosensor can be optimized by varying the structural parameters of the structure, suggesting promising applications in biological and biochemical detection.

  相似文献   

8.
Nowadays, graphene has many applications in optical instruments, biosensors, gas sensors, photovoltaic cells, and so on. In this study, we aimed at investigating the optical properties of graphene under the influence of plasmons created in one-dimensional photonic crystal structure by making use of the absorption spectrum. We put the gold photonic crystal in adjacent to graphene and placed an antireflection layer on top of it. Then, we studied the behavior of graphene absorption peaks in a near-infrared region. By analyzing the graphene behavior in this region, we observed that graphene absorption was increased up to 40% and graphene absorption value in absorption peak, absorption peak wavelength, absorption spectra width, and also its absorption spectra in a wide wavelength range from 1000 to 2500 nm, could be controlled by making use of different factors such as the substance of antireflection layer and photonic crystal geometric dimensions. This structure can make many applications possible for graphene such as using it to build biosensors to identify uric acid and some of the lipids that have specific significances in detecting atherosclerotic lesions as well as diagnosing the states of disease.  相似文献   

9.

The optical response of a new graphene-like material Si2BN’s nanostructures and some kinds of hybrid structures formed by Si2BN and metal nanoparticles was studied by using time-dependent density functional theory (TDDFT). We found that the periodic structures of Si2BN have wider absorption ranges than graphene. When the impulse excitation polarizes in different directions (armchair-edge direction and zigzag-edge direction), the absorption spectra of Si2BN nanostructures would be different (optical anisotropy). And in the hybrid structures, the increase of metal nanoparticles’ number brings the absorption intensity strengthening and red shift, which means a stronger ability of localized surface plasmon tuning. Also, the different metal nanoparticles were used to form the hybrid structures; they show an obviously different property as well. In addition, in the kinds of situations mentioned above, the plasmons were produced in visible region. This investigation provides an improved understanding of the plasmon enhancement effect in graphene-like photoelectric devices.

  相似文献   

10.
Cai  Zheng-jie  Liu  Gui-qiang  Liu  Zheng-qi  Liu  Xiao-shan  Pan  Ping-ping  Huang  Shan  Wang  Yan  Liu  Mu-lin  Gao  Huogui 《Plasmonics (Norwell, Mass.)》2016,11(2):683-688

The optical properties of a novel nanostructure consisting of a hexagonal array of aligned vertically three-layered metal-dielectric-metal nanodisks on a silver film are theoretically studied through the finite-difference time-domain method. The novel nanostructure exhibits three obvious optical transmission bands due to the excitation of subradiant plasmon modes, superradiant plasmon modes, and Fano resonances. Surface plasmon polaritons of the underlying Ag film also play a significant role on these three optical transmission bands via coupling with localized surface plasmons of nanodisk pairs. Moreover, the nanostructure also exhibits a good tunability of optical response by modifying the sizes of cylinders, the thickness of underlying metal film, and the dielectric constant of middle layer. These results demonstrate the nanostructure with great advantages in optical sensors and filters.

  相似文献   

11.
We have developed a theory for photoluminescence quenching and plasmonic properties in hybrid nanosystems made from three nanosystems such as a quantum emitters, metallic nanoparticles, and graphene. The metallic nanoparticles and graphene have surface plasmons which couple with probe photons and create surface plasmon polaritons. Therefore, the excitons in the quantum emitters interact with surface plasmon polaritons via the dipole-dipole interaction. Due to this interaction, energy is exchanged between the nanosystems. The second quantized formulation and the quantum density matrix method have been used to calculate photoluminescence and the radiative and non-radiative decay processes in the presence of dipole-dipole interaction. We have compared our theory with experiments of two and three nanosystems, and a good agreement between theory and experiments is achieved. It has been found that the photoluminescence quenching in hybrid systems not only occurs through the direct non-radiative energy transfer from the quantum emitter to the metal nanoparticle and to graphene but also occurs through the indirect non-radiative energy transfer from quantum emitter to the metal nanoparticle via graphene and from the quantum emitter to graphene via metal nanoparticle. These are interesting findings and they can be used to fabricate nanoswitches and nanosensors for medical applications.  相似文献   

12.

Finite element method (FEM) simulations have been carried out on free-standing and finite dielectric substrate-supported eccentric (i) silica core-gold nanoshell dimers and (ii) gold core-silica nanoshell dimers for understanding their near- and far-field plasmonic properties. In the case of eccentric silica core-gold nanoshell dimers, multiple peaks are observed in the near- and far-field spectra due to the plasmon hybridization. The number of peaks is found to be sensitive to the core offset parameters of the nanoshells forming nanodimer. The wavelength locations of the peaks due to the constructive coupling of the lower order modes found relatively more sensitive to the dielectric substrate. The number of peaks in the near- and far-field spectra found the same presence and absence of the dielectric substrate. The values of full width at half maximum (FWHM) of the peaks observed in the near-field spectra are found larger as compared to those observed in the far-field spectra. In contrast, in the case of eccentric gold core-silica nanoshell dimers, multiple peaks have not been observed. The FWHM of the observed peak is found sensitive to the core offset parameters of the nanoshells, and the number of peaks in the near field- and far-field spectra found not same in the presence and absence of the dielectric substrate. Moreover, the differences in near- and far-field spectra of plasmonically coupled (i) concentric nanoshells, (ii) eccentric nanoshells, and (iii) concentric and eccentric nanoshells also investigated numerically.

  相似文献   

13.
We study an active modulation of surface plasmon resonance (SPR) of Au nanoparticles based on highly doped graphene in visible and near-infrared regions. We find that compared to the traditional metal SPR, the SPR of Au nanoparticles based on graphene causes a remarkable blue shift. The field intensity in the gap is redistributed to standing wave. The field intensity of standing wave is about one order of magnitude higher than the traditional model. Moreover, the SPR of Au nanoparticles can be actively modulated by varying the graphene Fermi energy. We find the maximum modulation of field intensity of absorption spectra is more than 21.6 % at λ?=?822?nm and the amount of blue shift is 17.4 nm, which is about 2.14 % of the initial wavelength λ 0?=?813.4?nm, with increasing monolayer graphene Fermi energy from 1.0 to 1.5 ev. We find that the SPR sensitivity to the refractive index n of the environment is about 642 nm per refractive index unit (RIU). The SPR wavelengths have a big blue shift, which is about 33 nm, with increasing number of graphene layers from 1 to 3, and some shoulders on the absorption spectra are observed in the models with multilayer graphene. Finally, we study the Au nanorod array based on monolayer graphene. We find that the blue shift caused by the graphene increases from 14 to 24 nm, with increasing gap g y from 10 to 20 nm. Then, it decreases from 24 to 14 nm, with increasing gap g y from 20 to 50 nm. This study provides a new way for actively modulating the optical and optoelectronic devices.  相似文献   

14.
In this paper, we report a novel wavelength interrogation-based surface plasmon resonance (SPR) system, in which a film of three Ag layers and three Au layers are alternately deposited on a Kretschmann configuration as sensing element. This multilayer film shows higher sensitivity for refractive index (RI) measurement by comparing with single Au layer structure, which is consistent with its theoretical calculation. A sensitivity range of 2056–5893 nm/RIU can be achieved, which is comparable to RI sensitivities of other wavelength-modulated SPR sensors. Compared with Ag film, this Ag/Au multilayer arrangement offers anti-oxidant protection. This SPR biosensor based on a cost-effective Ag/Au multilayer structure is applicable to the real-time detection of specific interactions and dissociation of low protein concentrations. To extend the application of this highly-sensitive metal film device, we integrated this concept on an optical fiber. The range of RI sensitivities with Ag/Au multilayer was 1847–3309 nm/RIU. This miniaturized Ag/Au multilayer-based fiber optic sensor has a broad application in chemical and biological sensing.  相似文献   

15.
Liang  Cuiping  Yi  Zao  Chen  Xifang  Tang  Yongjian  Yi  Yong  Zhou  Zigang  Wu  Xuanguang  Huang  Zhen  Yi  Yougen  Zhang  Guangfu 《Plasmonics (Norwell, Mass.)》2020,15(1):93-100

In this paper, we demonstrate a dual-band metamaterial perfect absorber based on a Ag-dielectric-Ag multilayer nanostructure. The structure of top metal film covers nanoring grooves array. A dielectric layer has a function of confining electromagnetic fields. Theoretical analysis shows that two absorption peaks (1059 nm and 1304 nm) with the absorption of 99.2% and 99.9% have been achieved, respectively. The physical origin of perfect absorption peaks are related to the Fabry-Perot resonance effect and localized surface plasmon resonance (LSPR) of the nanoring grooves. Its perfect absorption and resonance wavelength can be well regulated by adjusting the relevant structural parameters. Additionally, the absorber demonstrates good operation angle-polarization-tolerance at wide incident angles (0–60°). We believe that our design has a promising application in plasmon-enhanced photovoltaic, optical absorption switching, and modulator optical communications in the infrared regime.

  相似文献   

16.
Optical transmission properties of multilayered ultra-thin metal gratings are numerically studied. The transmission spectrum has a broad stop-band with extremely low transmittance compared to that of a single-layer one for TM polarization. The stop-band is shown to be formed by multiple-interference tunneling and various plasmon resonance processes in ultra-thin-metal and dielectric multilayers. That is on the transmission background of non-apertured metal/dielectric multilayer structures that have low transmission in the long-wavelength range due to destructive multiple-interference tunneling, the transmission is further suppressed in the stop-band by plasmon resonances in the top metal/dielectric layers, e.g., the anti-symmetric bound surface plasmon mode in the ultra-thin metal layer and the gap surface plasmon mode in the metal-sandwiched dielectric layer. High transmission beyond the stop-band is due to coupled gap surface plasmon mode in the entire multilayer structures. Applications of the optical properties of the multilayered ultra-thin metal gratings are suggested for optical filtering (wavelength or polarization selective).  相似文献   

17.
The optical properties of a compound structure with metallic nanoparticle and nanohole arrays are numerically investigated by the means of finite-difference time domain method. We report on the observation of multi-valleys in the reflection spectra due to the excitation of surface plasmon (SP) resonant modes of the compound structure. Simulation results show that multiple SP resonances consist of surface plasmon polaritons on the gold film, localized surface plasmons on the nanoparticles, and coupling mode between them. These findings are important for applications utilizing multiple surface plasmon resonances.  相似文献   

18.

Chikungunya virus has been discovered in about 60 countries of the world. It leads to joint pain, joint swelling, headache, muscle pain, and fatigue of the human body. In this work, a surface plasmon resonance (SPR)based sensor is developed to detect chikungunya virus through normal and infected platelets and plasma blood cells. The proposed SPR-based sensor uses silicon and graphene layers coated over the base of a glass prism sputtered with a silver layer. The graphene layer has the advantage of enhancing the biomolecules adsorption on the metal layer. The silicon layer between silver and graphene enhances the sensor performance. The number of graphene layers along with the thicknesses of silicon and silver layers is optimized to get the highest sensitivity of the detector. To investigate the effect of the light source wavelength, simulations are performed for four different wavelengths. The highest sensitivities exhibited by the SPR-based sensor are 393 and 160 deg/RIU for the platelets and plasma cells, respectively.

  相似文献   

19.
Surface plasmon polariton (SPP) excitation of the coupled light at small contact area of chromium pillars as the interface of metastructured gold funnel layer and silica medium can be enhanced locally in the gold meta-funnel-structured filter. In the present investigation, the filter is comprised of three layers, namely gold meta-funnels, nano-sized chromium pillars, and silica as the substrate. The incoming infrared (IR) waves, coupled with the excited plasmons at the first and second layers, form an excitation, known as deformed plasmon polariton. Asymmetric distribution of localized SPPs takes place owing to the inherent converging plasmonic feature of the gold funnel structure. The formation of reflection peaks with different magnitudes at different incidence angles of the polarized wave in the spectral characteristics makes the structure prominent for filtering the IR waves. Moreover, the gold meta-funnel-structured filter possesses the additional feature of distinguishing the type of polarized incidence wave. It was found that the transmission remains maximum corresponding to the normal incidence of the TE-polarized waves, whereas the TM-polarized waves over the same wavelength range are almost blocked for any value of incidence angle. The existence of transmission peaks corresponding to the TE waves demonstrates another application of this device as metastructured polarizer filter.  相似文献   

20.
Gold nanoparticles (GNP) have been used in a variety of localized surface plasmon resonance (LSPR)-based optical sensor systems and in a variety of forms, such as colloidal suspensions, immobilized GNP on flat surfaces or optical fibres. A key parameter affecting the sensitivity of these systems is the effective depth of penetration of the surface plasmons. This study aims to determine the plasmon penetration depth in the case of an immobilized GNP-based LSPR optical biosensor. The optical biosensor used for experimentation is a U-bend fibre optic probe of 200-μm core diameter and 1.5-mm bend diameter on which GNP is immobilized. Formation of multilayered nanostructures on the immobilized GNP was used to investigate the field of the localized surface plasmons. Two multilayered nanostructures were explored in this study, viz. a polyelectrolyte multilayer formed by layer-by-layer (LBL) deposition of oppositely charged polyelectrolytes and an immunoglobulin G (IgG) multilayer formed through sequential immobilization of two mutually specific antibodies. Measurement of LSPR absorbance change with deposition of each analyte layer was used to determine the plasmon penetration depth (d P) of the LSPR biosensor. Probing the plasmon field with an IgG multilayer gave rise to at least twofold higher d P compared to d P obtained from the polyelectrolyte multilayer. The effect of GNP size was also studied, and GNP of three diameters, viz. 18, 36 and 45 nm, were used. The 36-nm-diameter GNP exhibited the highest d P. The outcomes of this study may provide leads for optimization of LSPR-based sensors for various biosensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号