首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zhou G  Isoe J  Day WA  Miesfeld RL 《PloS one》2011,6(3):e18150

Background

One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation.

Methodology/Principal Findings

Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta''), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked.

Conclusions

alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases.  相似文献   

3.
4.
5.
Secretion and luminal formation of the peritrophic membrane (PM) were induced in female Anopheles stephensi and Aedes aegypti by feeding the mosquitoes on a warmed suspension of latex particles in Ringer's solution. The PM in A. stephensi was produced from apical secretion vesicles stored in the midgut epithelial cells and secreted into the lumen during feeding. In A. aegypti, the PM was formed de novo. When the latex feeding was followed 24 hr later by a meal of lyophilized pig blood, the 2 mosquito species exhibited very different modifications to their PM structure; in A. stephensi no PM was formed around the blood meal, whereas de novo synthesis of the PM in A. aegypti continued during the blood meal, with the resulting PM greatly thickened compared to the normal feeding. This artificial induction of PM formation was used as the basis to study the role of the PM in blood meal digestion and in infectivity of mosquitoes by the appropriate species of Plasmodium. The feeding of a latex suspension alone had no stimulatory effect on the 2 major midgut proteases, trypsin and aminopeptidase, in either species. After a blood meal alone, proteases rose to maximum activity at 30 hr and 24 hr after feeding in A. stephensi and A. aegypti, respectively. After double feeding, protease activities in both species were almost identical to those in blood-fed mosquitoes. Neither the absence of a PM (in A. stephensi) nor the presence of a thickened PM (in A. aegypti), therefore, has any effect on the ability of mosquitoes to digest a blood meal. Malaria infectivity, measured by oocyst counts, also was compared after normal and double feeding using infective blood meals. Infectivity of A. stephensi by Plasmodium berghei was unaffected by the presence or absence of the PM. The thickened PM produced by double feeding in A. aegypti caused a reduction of midgut infectivity by Plasmodium gallinaceum. These results suggest that the PM may act as a partial, but not an absolute, barrier to invasion of the midgut by the ookinete.  相似文献   

6.
In female mosquitoes anal injections (enemas) of nutrient solutions were administered in measured amounts to allow direct comparison of protease activities.The amount of protein ingested had a pronounced effect upon the rate of protein digestion, but had little influence upon the rate of protease secretion. Maximal protease activity increased only slightly with increasing meal size and always coincided with the digestion of about 80 per cent of the protein ingested.The use of the enema technique provided an experimental means to reject clearly a neural stimulus for protease secretion. Proof is given for a secretagogue stimulus: the presence of globular proteins with a minimal molecular weight is required for protease secretion.Despite antitryptic factors which are known to occur in different titres in vertebrate bloods, no inhibition was observed in vivo when proteases were recorded after enemas of blood or plasma from several hosts into Aedes aegypti, Anopheles quadrimaculatus, and Culex pipiens quinquefasciatus.Mosquito trypsin was shown to account for about 75 per cent of the proteolytic activity in midgut homogenates. Chymotrypsin was present although with very low activity. Calcium did not stimulate mosquito trypsin as it does mammalian trypsin. Between 22 and 32°C a Q10 of 2·0 was observed for proteases as well as for protein digestion.  相似文献   

7.
8.

Background

Mosquitoes are insects that vector many serious pathogens to humans and other vertebrates. Most mosquitoes must feed on the blood of a vertebrate host to produce eggs. In turn, multiple cycles of blood feeding promote frequent contacts with hosts and make mosquitoes ideal disease vectors. Both hormonal and nutritional factors are involved in regulating egg development in the mosquito, Aedes aegypti. However, the processes that regulate digestion of the blood meal remain unclear.

Methodology/Principal Findings

Here we report that insulin peptide 3 (ILP3) directly stimulated late phase trypsin-like gene expression in blood fed females. In vivo knockdown of the mosquito insulin receptor (MIR) by RNA interference (RNAi) delayed but did not fully inhibit trypsin-like gene expression in the midgut, ecdysteroid (ECD) production by ovaries, and vitellogenin (Vg) expression by the fat body. In contrast, in vivo treatment with double-stranded MIR RNA and rapamycin completely blocked egg production. In vitro experiments showed that amino acids did not simulate late phase trypsin-like gene expression in the midgut or ECD production by the ovaries. However, amino acids did enhance ILP3-mediated stimulation of trypsin-like gene expression and ECD production.

Conclusions/Significance

Overall, our results indicate that ILPs from the brain synchronize blood meal digestion and amino acid availability with ovarian ECD production to maximize Vg expression by the fat body. The activation of digestion by ILPs may also underlie the growth promoting effects of insulin and TOR signaling in other species.  相似文献   

9.
10.
The main vector for transmission of malaria in Mexico is the Anopheles albimanus mosquito. The midgut of disease-transmitting mosquitoes carries out a variety of functions that are related to blood feeding. We analyzed the midgut of A. albimanus infected with Plasmodium berghei (resistant mosquito) using a proteomic approach to identify putative short peptides that are enriched in the midgut after blood feeding. Mosquito midguts were analyzed by two-dimensional electrophoresis to determine the changes in protein profiles. We identified 21 spot proteins that are differentially expressed in the blood of mosquitoes during the immune challenge. Molecular weight of the spots varied from 13 to 36 kDa, with a broad isoelectric point range of 3.92–8.90. We identified the differentially expressed proteins using mass spectrometry and constructed a proteomic data base of the A. albimanus midgut with diverse functions, some of them proteins with digestive and immunologic functions. Identification of these proteins may have important implications for understanding the blood meal digestion process, as well as developing novel vector control strategies and understanding parasite vector interactions.  相似文献   

11.
Midgut extracts from Aedes aegypti females exhibited hydrolytic activities against synthetic substrates for carboxypeptidase A, carboxyopeptidase B and leucine-aminopeptidase. The three activities showed a broad pH optimum, with maximum activities at pH between 6.5 and 8.5. Enzymatic activities were further characterized by testing the effects of a variety of protease inhibitors. Captopril and 1-10-phenantroline inhibited the activities of carboxypeptidases A and B, while leuhistin, amastatin and bestatin inhibited aminopeptidase activity. Exopeptidase activities were induced by a blood meal and the highest activities were found during the peak of trypsin activity, about 20-24 h after feeding. An amino acid meal failed to induce significant increases in any of the three exopeptidase activities. The amounts of exopeptidase activities induced were proportional to the protein concentration of the meal. The addition of soy-trypsin inhibitor to the protein meal blocked the post-feeding induction of exopeptidases. The features of the induction of synthesis of the three exopeptidase activities resembled the induction of synthesis of late trypsin during the second phase of digestion.  相似文献   

12.
13.
The tarnished plant bug, Lygus hesperus Knight, is a pest that causes considerable economic losses to vegetables, cotton, canola, and alfalfa. Detailed knowledge of its digestive physiology will provide new opportunities for a sustainable pest management approach to control this insect. Little is known about the different protease class contributions to the overall digestion of a specific protein. To this end, the proteolytic activities in female adult L. hesperus salivary gland and midgut homogenates were quantified over a range of pH's and time points, and the contribution of different classes of proteases to the degradation of FITC-casein was determined. In the salivary gland, serine proteases were the predominant class responsible for caseinolytic activity, with the rate of activity increasing with increasing pH. In contrast, both aspartic and serine proteases contributed to caseinolytic activity in the midgut. Aspartic protease activity predominated at pH 5.0 and occurred immediately after incubation, whereas serine protease activity predominated at pH 7.5 after a 9h delay and was resistant to aprotinin. The salivary serine proteases were distinctly different from midgut serine proteases, based on the tissue-specific differential susceptibility to aprotinin and differing pH optima. Collectively, the caseinolytic activities complement one another, expanding the location and pH range over which digestion can occur.  相似文献   

14.
The activities of digestive protease within the midgut of Mamestra configurata (bertha armyworm) larvae were examined using specific substrates and protease inhibitors. The bulk of the activity was associated with serine proteases comprising trypsin-, chymotrypsin-, and elastase-like enzymes. At least 10-15 serine protease isozymes were detected using one-dimension gelatin gel electrophoresis. Cysteine or aspartic protease activities were not present; however, amino- and carboxypeptidase activities were associated with the midgut extract. Midgut proteases were active in the pH range of 5.0-12.0 with peaks at pH 7.5 and 11.0. In general, the middle region of the midgut exhibited a higher pH (approximately 8.0) than either the posterior or anterior regions (approximately 7.3-7.7). Moulting larvae possessed a neutral gut pH that was 0.5-1.5 units below that of feeding larvae. Degenerate PCR and expressed sequence tag (EST)-based approaches were used to isolate 30 distinct serine protease encoding cDNAs from a midgut-specific cDNA library including 8 putative trypsins, 9 chymotrypsins, 1 elastase, and 12 whose potential activities could not be determined. cDNAs encoding three amino- and two carboxypeptidases were also identified. Larvae feeding upon artificial diet containing 0.2% soybean trypsin inhibitor experienced a significant delay in development.  相似文献   

15.
16.
We have previously shown that defects in COPI coatomer proteins cause 80% mortality in blood fed Aedes aegypti mosquitoes by 96 h post-feeding. In this study we show that similar deficiencies in COPII and clathrin mediated vesicle transport do not disrupt blood meal digestion and are not lethal, even though both COPII and clathrin functions are required for ovarian development. Since COPI vesicle transport is controlled in mammalian cells by upstream G proteins and associated regulatory factors, we investigated the function of the orthologous ADP-ribosylation factor 1 (ARF1) and ARF4 proteins in mosquito tissues. We found that both ARF1 and ARF4 function upstream of COPI vesicle transport in blood fed mosquitoes given that an ARF1/ARF4 double deficiency is required to phenocopy the feeding-induced mortality observed in COPI coatomer deficient mosquitoes. Small molecule inhibitors of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) are often transitory, and therefore, we investigated the role of five Ae. aegypti ARF-GEF and ARF-GAP proteins in blood meal digestion using RNA interference. Surprisingly, we found that ARF-GEF and ARF-GAP functions are not required for blood meal digestion, even though both vitellogenesis and ovarian development in Ae. aegypti are dependent on GBF1 (ARF-GEF) and GAP1/GAP2 (ARF-GAPs) proteins. Moreover, deficiencies in orthologous COPI regulating genes in Anopheles stephensi mosquitoes had similar phenotypes, indicating conserved functions in these two mosquito species. We propose that based on the need for rapid initiation of protein digestion and peritrophic membrane formation, COPI vesicle transport in midgut epithelial cells is not dependent on ARF-GEF and ARF-GAP regulatory proteins to mediate vesicle recycling within the first 48 h post-feeding.  相似文献   

17.
Glossina morsitans females were fed upon goats or components of beef blood through an Agar/Parafilm membrane and for each fly the following were determined: fly weight, meal weight, posterior midgut trypsin, posterior midgut protein, anterior midgut trypsin, and anterior midgut protein. Secretion of trypsin was stimulated by feeding flies upon goats, defibrinated beef blood, beef serum, haemolysed beef erythrocytes but not washed beef erythrocytes. There was a significant correlation between posterior midgut trypsin and the amount of protein in the posterior midgut, and the slope of the regression of trypsin upon protein content was significantly different from zero. There was a significant correlation between posterior midgut trypsin and meal size for flies 0 to 24 hr after emergence, but not those 24 to 48 hr old when fed upon a goat. For unfed flies there was a significant correlation between posterior midgut trypsin and fly weight.  相似文献   

18.
The carbohydrates galactosamine and heparin, previously shown to inhibit phlebotomine lectin activity in vitro, were fed to the sandfly Phlebotomus duboscqi Neveu-Lemaire (Diptera: Psychodidae) with blood, and the effects on mortality, fecundity, protease activity and susceptibility to Leishmania major Yakimoff & Schokhor (Kinetoplastida: Trypanosomatidae) were studied. Previous study revealed that galactosamine considerably enhanced the establishment of L. major infection in P. duboscqi and significantly increased parasite loads in late infections. This work demonstrates a similar but less pronounced effect of heparin. Heparin increased infection rates and parasite loads 3 and 9 days post-feeding but did not affect the location of Leishmania promastigotes and their anterior migration. Galactosamine supplement caused pronounced changes in bloodmeal digestion. It abolished the activity of alkaline proteases and trypsin, caused premature defecation of bloodmeal, increased mortality of female sandflies in days 1-4 post-feeding and decreased their fecundity. Heparin had a less pronounced effect on sandfly physiology. It lowered trypsin activity 12 and 72 h post-bloodmeal but did not alter defecation, mortality and oviposition. The data suggest that the enhancing effect of these carbohydrates on Leishmania infections in sandfly midgut could be explained by their interference with midgut proteases. The study supports the hypothesis that proteolytic activities of midgut proteases strongly influence the vector competence of sandflies.  相似文献   

19.
Abstract  The protein digestive capability of the larvae of the longhorn beetle ( Oemona hirta , Coleoptera: Cerambycidae, Fabricius, 1775) was investigated. This species feeds only on wood where there is a high proportion of vascular tissue. The pH of the midgut, the major digestive organ, was alkaline and protein hydrolysis was maximal at alkaline pH. Use of specific synthetic peptide substrates showed that the major protease activities were the endopeptidases, trypsin and chymotrypsin-like activity, and the exopeptidase, leucine aminopeptidase and the pH curves corresponded to that with protein substrate. Studies using a range of serine protease inhibitors as well as specific inhibitors of metalloproteases, cysteine proteases and aspartate proteases confirmed a serine protease-based digestive system similar to earlier reports of sapwood-feeding Cerambycids. Control of these insect pests using protease inhibitors is discussed.  相似文献   

20.
Chymotrypsin and trypsin inhibitors persist throughout all developmental instars of Aedes aegypti. After a blood meal, inhibitor activity against chymotrypsin was more than double that of sugar-fed females, but only weak activity was detected in midguts where proteinase inhibitors has been thought to regulate proteinases during blood digestion. A fourfold increase in the ratio of abdominal/thoracic inhibitor activity after the blood meal strongly suggested that fat body, or other abdominal tissues, represent the major source of inhibitor. Chymotrypsin inhibitor activity was deposited in maturing oocytes. Similar results were obtained with blood-fed Anopheles albimanus. Chymotrypsin inhibitor was active against different mosquito proteinases and against bovine α-chymotrypsin and trypsin, but not against subtilisin, pancreatic elastase, or fungal proteases; chymotrypsin inhibitors did not interfere with bacterial growth. The hypothesis on the regulation of blood digestion through the action of proteinase inhibitors during the gonotrophic cycle was abandoned and its involvement in the phenoloxidase cascade in the mosquito egg chorion is suggested instead. Arch. Insect Biochem. Physiol. 36:315–333, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号