首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential benefits of drugs directly targeting the ErbB receptors for cancer therapy have led to an extensive development within this field. However, the clinical effects of ErbB receptor-targeting drugs in cancer treatment are limited due to a high frequency of resistance. It has been reported that, when inhibiting the epidermal growth factor receptor (EGFR) with the tyrosine kinase inhibitor gefitinib, increased activation of ErbB3 via MET, or by re-localization of ErbB3 mediates cell survival. Here we show further evidence that members of the ErbB receptor family facilitate resistance to EGFR inhibitor treatment in ErbB2 overexpressing breast cancer cells. We found that gefitinib treatment increased ErbB3 expression, both at protein and mRNA levels. ErbB3 expression was upregulated not only by gefitinib but also by a panel of different EGFR inhibitors, suggesting that inhibition of EGFR in general affects ErbB3 expression. In addition, we found that gefitinib treatment increased ErbB2 expression levels while EGFR inhibitors decreased the activity of ErbB2. Concentrations of gefitinib that decreased phospho-ErbB2 reversely increased ErbB3 levels. We further examined changes induced by gefitinib treatment on mRNA levels of the most common genes known to be involved in breast cancer. As expected, we found that gefitinib downregulated genes whose functions were linked to cellular proliferation, such as Ki-67, topoisomerase II alpha and cyclins, and surprisingly downregulated gene expression of FAS which is involved in apoptotic signaling. Together, our data strongly suggest that resistance to EGFR inhibitors may result from the compensation of other family members and that combinations of anti-cancer drugs are required to increase the sensitivity of these treatments.  相似文献   

2.
Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErbB3 and ErbB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective.  相似文献   

3.
4.
Alterations in ErbB2 or fibroblast growth factor receptor-4 (FGFR-4) expression and activity occur in a significant fraction of breast cancers. Because signaling molecules and pathways cooperate to drive cancer progression, simultaneous targeting of multiple pathways is an appealing therapeutic strategy. With this in mind, we examined breast tumor cells for their sensitivity to the ErbB2 and FGFR inhibitors, PKI166 and PD173074, respectively. Simultaneous blocking of ErbB2 and FGFR-4 in MDA-MB-453 tumor cells had a stronger anti-proliferative effect than treatment with individual inhibitors. Examination of cell cycle regulators revealed a novel translation-mediated mechanism whereby ErbB2 and FGFR-4 cooperate to regulate cyclin D1 levels. Our results showed that FGFR-4 and ErbB2 via the MAPK and the phosphatidylinositol 3-kinase/protein kinase B pathways, respectively, both contribute to the maintenance of constitutive activity of the mammalian target of rapamycin translational pathway. Dual inhibition of these receptors strongly blocked S6 kinase 1 (S6K1) activity and cyclin D1 translation, as attested by a decrease in cyclin D1 mRNA association with polysomes. Ectopic expression of active protein kinase B or active S6K1 abrogated the dual inhibitor-mediated down-regulation of cyclin D1 expression, demonstrating the importance of these FGFR-4/ErbB2 signaling targets in regulating cyclin D1 translation. S6K1 has the central role in this process, since small interfering RNA-targeted S6K1 depletion led to a decrease in cellular S6K1 activity and, as a consequence, repression of cyclin D1 expression. Thus, we propose a novel mechanism for controlling cyclin D1 expression downstream of combined activity of ErbB2 and FGFR-4 that involves S6K1-mediated translation.  相似文献   

5.
Breast cancers that overexpress the receptor tyrosine kinase ErbB2/HER2/Neu result in poor patient outcome because of extensive metastatic progression. Herein, we delineate a molecular mechanism that may govern this malignant phenotype. ErbB2 induction of migration requires activation of the small GTPases Rac1 and Cdc42. The ability of ErbB2 to activate these small GTPases necessitated expression of p120 catenin, which is itself up-regulated by signaling through ErbB2 and the tyrosine kinase Src. Silencing p120 in ErbB2-dependent breast cancer cell lines dramatically inhibited migration and invasion as well as activation of Rac1 and Cdc42. In contrast, overexpression of constitutively active mutants of these GTPases reversed the effects of p120 silencing. Lastly, ectopic expression of p120 promoted migration and invasion and potentiated metastatic progression of a weakly metastatic, ErbB2-dependent breast cancer cell line. These results suggest that p120 acts as an obligate intermediate between ErbB2 and Rac1/Cdc42 to modulate the metastatic potential of breast cancer cells.  相似文献   

6.
Memo mediates ErbB2-driven cell motility   总被引:3,自引:0,他引:3  
Clinical studies have revealed that cancer patients whose tumours have increased ErbB2 expression tend to have more aggressive, metastatic disease, which is associated with parameters predicting a poor outcome. The molecular basis underlying ErbB2-dependent cell motility and metastases formation, however, still remains poorly understood. In this study, we show that activation of a set of signalling molecules, including MAPK, phosphatidylinositol-3-OH kinase (PI(3)K) and Src, is required for Neu/ErbB2-dependent lamellipodia formation and for motility of breast carcinoma cells. Stimulation of these molecules, however, failed to induce efficient cell migration in the absence of Neu/ErbB2 phosphorylation at Tyr 1201 or Tyr 1227. We describe a novel molecule, Memo (mediator of ErbB2-driven cell motility), that interacts with a phospho-Tyr 1227-containing peptide, most probably through the Shc adaptor protein. After Neu/ErbB2 activation, Memo-defective cells form actin fibres and grow lamellipodia, but fail to extend microtubules towards the cell cortex. Our data suggest that Memo controls cell migration by relaying extracellular chemotactic signals to the microtubule cytoskeleton.  相似文献   

7.
8.
9.
Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma.  相似文献   

10.
11.
The receptor tyrosine kinase ErbB2 plays a crucial role in tumorigenesis. We showed previously that the molecular chaperone Hsp90 protects ErbB2 from proteasome-mediated degradation by binding to a short loop structure in the N-lobe of the kinase domain. Here we show that loss of Hsp90 binding correlates with enhanced ErbB2 kinase activity and its transactivating potential, concomitant with constitutively increased phosphorylation of Tyr877, located in the activation loop of the kinase domain. We show further that Tyr877 phosphorylation is mediated by Src and that it is necessary for the enhanced kinase activity of ErbB2. Finally, computer modeling of the kinase domain suggests a phosphorylation-dependent reorientation of the activation loop, denoting the importance of Tyr877 phosphorylation for ErbB2 activity. These findings suggest that Hsp90 binding to ErbB2 participates in regulation of kinase activity as well as kinase stability.  相似文献   

12.
13.
14.
The intracellular signals driving the proliferation of breast carcinoma (BC) cells have been widely studied. Both the mitotic and metastatic potential of BC cells have been linked to the frequent overexpression of ErbB family members. Other signaling molecules, including the estrogen receptor, the tyrosine kinases c-Src and Syk, and STAT proteins, especially STAT3, have also been implicated in BC tumor growth. Here we have examined ErbB and STAT protein expression and activation in six BC-derived cell lines. ErbB expression and tyrosine phosphorylation varied considerably among the six cell lines. However, STAT protein expression and activation were more consistent. Two levels of STAT3 activation were distinguished in DNA-binding assays: an epidermal growth factor-inducible, high level that requires both ErbB1 and Janus kinase (JAK) activity and an elevated serum-dependent level that is maintained by autocrine/paracrine signaling and requires JAK activity but is independent of ErbB1 kinase activity. BC cell growth could be inhibited by dominant-negative versions of STAT3 and the JAK inhibitor AG490 but not by PD153035 or PD168393, inhibitors of ErbB1 kinase activity. This indicates that BC cell proliferation may be a consequence of STAT3 activation by autocrine/paracrine signals.  相似文献   

15.
Receptor-targeted cancer therapy   总被引:5,自引:0,他引:5  
Insight into the molecular mechanisms of malignant transformation is changing the way cancer is being treated. Conventional treatment strategies target the DNA of all dividing cells, resulting in a significantly increased risk of collateral toxicity. In addition, the accumulation of multiple mutations leads to drug resistance in many cancer cells. Targeted strategies have now been developed that specifically disrupt oncogenically active cell surface receptors and endogenous signaling molecules. These agents have a much greater selectivity for tumor tissue and decreased risk of side effects. Increased signaling through ErbB receptors via gene amplification, overexpression, and mutation has been implicated in many human cancers and associated with poor prognosis. Interruption of this process has been shown to cause antitumor effects. Downregulation of the ErbB receptors, HER-2/neu, and later EGFR, with monoclonal antibodies was the first demonstration of targeted therapy. Subsequently, the ErbB tyrosine kinase domain has been successfully targeted with small molecule inhibitors. The development of novel ErbB-directed entities is ongoing, with particular promise being shown by strategies targeting receptor interaction in oligomeric complexes.  相似文献   

16.
The role of the ErbB family in supporting the malignant phenotype was characterized by stable transfection of a single chain antibody (ScFv5R) against ErbB2 containing a KDEL endoplasmic reticulum retention sequence into GEO human colon carcinoma cells. The antibody traps ErbB2 in the endoplasmic reticulum, thereby down-regulating cell surface ErbB2. The transfected cells showed inactivation of ErbB2 tyrosine phosphorylation and reduced heterodimerization of ErbB2 and ErbB3. This resulted in greater sensitivity to apoptosis induced by growth deprivation and delayed tumorigenicity in vivo. Furthermore, decreased heterodimerization of ErbB2 and ErbB3 led to a reorganization in ErbB function in transfected cells as heterodimerization between epidermal growth factor receptor (EGFR) and ErbB3 increased, whereas ErbB3 activation remained almost the same. Importantly, elimination of ErbB2 signaling resulted in an increase in EGFR expression and activation in transfected cells. Increased EGFR activation contributed to the sustained cell survival in transfected cells.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号