首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Botulinum neurotoxins (BoNTs), the most potent naturally-occurring neurotoxins known to humans, comprise seven distinct serotypes (BoNT/A-G), each of which exhibits unique substrate specificity. Many methods have been developed for BoNT detection, in particular for BoNT/A, with various complexity and sensitivity, while substrate based FRET assay is considered as the most widely used approach due to its simplicity and sensitivity. In this study, we designed a vesicle-associated membrane protein 2 (VAMP2) based FRET assay based on the understanding of the VAMP2 and light chain/B (LC/B) interactions in our previous studies. The current design constituted the shortest peptide, VAMP2 (63–85), with FRET dyes (EDAN and Dabcyl) labelled at position 76 and 85, respectively, which showed minimal effect on VAMP2 substrate catalysis by LC/B and therefore enhanced the sensitivity of the assay. The FRET peptide, designated as FVP-B, was specific to LC/B, with a detection sensitivity as low as ∼20 pM in 2 h. Importantly, FVP-B showed the potential to be scaled up and used in high throughput screening of LC/B inhibitor. The currently developed FRET assay is one of the most economic and rapid FRET assays for LC/B detection.  相似文献   

2.
An assay based on fluorescence resonance energy transfer (FRET) has been developed to screen for ubiquitination inhibitors. The assay measures the transfer of ubiquitin from Ubc4 to HECT protein Rsc 1083. Secondary reagents (streptavidin and antibody to glutathione-S-transferase [GST]), pre-labeled with fluorophores (europium chelate, Eu(3+), and allophycocyanin [APC]), are noncovalently attached via tags (biotin and GST) to the reactants (ubiquitin and Rsc). When Rsc is ubiquitinated, Eu(3+) and APC are brought into close proximity, permitting energy transfer between the two fluorescent labels. FRET was measured as time-resolved fluorescence at the emission wavelength of APC, almost entirely free of nonspecific fluorescence from Eu(3+) and APC. The FRET assay generated a lower ratio of signal to background (8 vs. 31) than an assay for the same ubiquitination step that was developed as a dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA). However, compared to the DELFIA method, use of FRET resulted in higher precision (4% vs. 11% intraplate coefficient of variation). Quenching of fluorescence was minimal when compounds were screened at 10 microg/ml using FRET. Employing a quick and simple homogeneous method, the FRET assay for ubiquitin transfer is ideally suited for high throughput screening.  相似文献   

3.
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.  相似文献   

4.
An assay method that continuously measures the protein tyrosine phosphatase (PTP)-catalyzed dephosphorylation reaction based on fluorescence resonance energy transfer (FRET) was developed as an improvement of our previously reported discontinuous version [M. Nishikata, K. Suzuki, Y. Yoshimura, Y. Deyama, A. Matsumoto, Biochem. J. 343 (1999) 385-391]. The assay uses oligopeptide substrates that contain (7-methoxycoumarin-4-yl)acetyl (Mca) group as a fluorescence donor and 2,4-dinitrophenyl (DNP) group as a fluorescence acceptor, in addition to a phosphotyrosine residue located between these two groups. In the assay, a PTP solution is added to a buffer solution containing a FRET substrate and chymotrypsin. The PTP-catalyzed dephosphorylation of the substrate and subsequent chymotryptic cleavage of the dephosphorylated substrate results in a disruption of FRET, thereby increasing Mca fluorescence. In this study, we used FRET substrates that are much more susceptible to chymotryptic cleavage after dephosphorylation than the substrate used in our discontinuous assay, thus enabling the continuous assay without significant PTP inactivation by chymotrypsin. The rate of fluorescence increase strictly reflected the rate of dephosphorylation at appropriate chymotrypsin concentrations. Since the continuous assay allows the measurement of initial rate of dephosphorylation reaction, kinetic parameters for the dephosphorylation reactions of FRET substrates by Yersinia, T-cell and LAR PTPs were determined. The continuous assay was compatible with the measurement of very low PTP activity in a crude enzyme preparation and was comparable in sensitivity to assays that use radiolabeled substrates.  相似文献   

5.
The extracellular protease ADAMTS-7 has been identified as a potential therapeutic target in atherosclerosis and associated diseases such as coronary artery disease (CAD). However, ADAMTS-7 inhibitors have not been reported so far. Screening of inhibitors has been hindered by the lack of a suitable peptide substrate and, consequently, a convenient activity assay. Here we describe the first fluorescence resonance energy transfer (FRET) substrate for ADAMTS-7, ATS7FP7. ATS7FP7 was used to measure inhibition constants for the endogenous ADAMTS-7 inhibitor, TIMP-4, as well as two hydroxamate-based zinc chelating inhibitors. These inhibition constants match well with IC50 values obtained with our SDS-PAGE assay that uses the N-terminal fragment of latent TGF-β–binding protein 4 (LTBP4S-A) as a substrate. Our novel fluorogenic substrate ATS7FP7 is suitable for high throughput screening of ADAMTS-7 inhibitors, thus accelerating translational studies aiming at inhibition of ADAMTS-7 as a novel treatment for cardiovascular diseases such as atherosclerosis and CAD.  相似文献   

6.
Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell.  相似文献   

7.
Matrix metalloproteases (MMPs) in particular MMP-2, have been associated with several pathological conditions such as ovarian, urothelial, cutaneous, gastric, breast, and cervical cancers, etc. Successful treatment of these pathological conditions requires sensitive, reliable, quick and effective diagnostic tools such as fluorescence resonance energy transfer (FRET) based assays in early stage of the disease. A peptidyl-FRET substrate having seven amino acid residues (PLGLKAR) with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher group has been synthesized using solid-phase fluorenylmethoxycarbonyl (Fmoc) peptide chemistry. The newly designed substrate is stable and shows a K m value of 15???M for hMMP-2. This K m value is the lowest compared with all other known hMMP-2 substrates having Mca/Dnp. Validation of the new FRET substrate in presence/absence of scorpion venom chlorotoxin, a known hMMP-2 inhibitor, shows an increase in detection efficiency of 6,250 times as compared to commonly used gelatin zymography. The new FRET substrate is much more cost effective and can be used for high throughput screening of hMMP-2 inhibitors in the laboratory for research and diagnostic purposes.  相似文献   

8.
9.
A method is described for monitoring the cleavage of an oligoribonucleotide substrate by the 2-5A-dependent RNase L based on fluorescence resonance energy transfer (FRET). The oligoribonucleotide, rC11U2C7, was labeled covalently at its 5'-terminus with fluorescein and at its 3'-terminus with rhodamine to provide a substrate for RNase L. On cleavage, the fluorescence at 538 nm (with 485 nm excitation) increased by a factor of 2.8, allowing real-time quantitation of the reaction progress. The method was performed easily in a 96-well plate format and allowed quantitative high throughput analyses of RNase L activity with different activators.  相似文献   

10.
《Autophagy》2013,9(3):401-412
Atg4 is required for cleaving Atg8, allowing it to be conjugated to phosphatidylethanolamine on phagophore membranes, a key step in autophagosome biogenesis. Deconjugation of Atg8 from autophagosomal membranes could be also a regulatory step in controlling autophagy. Therefore, the activity of Atg4 is important for autophagy and could be a target for therapeutic intervention. In this study, a sensitive and specific method to measure the activity of two Atg4 homologs in mammalian cells, Atg4A and Atg4B, was developed using a fluorescence resonance energy transfer (FRET)-based approach. Thus LC3B and GATE-16, two substrates that could be differentially cleaved by Atg4A and Atg4B, were fused with CFP and YFP at the N- and C-terminus, respectively, allowing FRET to occur. The FRET signals decreased in proportion to the Atg4-mediated cleavage, which separated the two fluorescent proteins. This method is highly efficient for measuring the enzymatic activity and kinetics of Atg4A and Atg4B under in vitro conditions. Applications of the assay indicated that the activity of Atg4B was dependent on its catalytic cysteine and expression level, but showed little changes under several common autophagy conditions. In addition, the assays displayed excellent performance in high throughput format and are suitable for screening and analysis of potential modulators. In summary, the FRET-based assay is simple and easy to use, is sensitive and specific, and is suitable for both routine measurement of Atg4 activity and high-throughput screening.  相似文献   

11.
Li M  Chen X  Ye QZ  Vogt A  Yin XM 《Autophagy》2012,8(3):401-412
Atg4 is required for cleaving Atg8, allowing it to be conjugated to phosphatidylethanolamine on phagophore membranes, a key step in autophagosome biogenesis. Deconjugation of Atg8 from autophagosomal membranes could be also a regulatory step in controlling autophagy. Therefore, the activity of Atg4 is important for autophagy and could be a target for therapeutic intervention. In this study, a sensitive and specific method to measure the activity of two Atg4 homologs in mammalian cells, Atg4A and Atg4B, was developed using a fluorescence resonance energy transfer (FRET)-based approach. Thus LC3B and GATE-16, two substrates that could be differentially cleaved by Atg4A and Atg4B, were fused with CFP and YFP at the N- and C-terminus, respectively, allowing FRET to occur. The FRET signals decreased in proportion to the Atg4-mediated cleavage, which separated the two fluorescent proteins. This method is highly efficient for measuring the enzymatic activity and kinetics of Atg4A and Atg4B under in vitro conditions. Applications of the assay indicated that the activity of Atg4B was dependent on its catalytic cysteine and expression level, but showed little changes under several common autophagy conditions. In addition, the assays displayed excellent performance in high throughput format and are suitable for screening and analysis of potential modulators. In summary, the FRET-based assay is simple and easy to use, is sensitive and specific, and is suitable for both routine measurement of Atg4 activity and high-throughput screening.  相似文献   

12.
Novel biochemical strategies are needed to identify the next generation of protein kinase inhibitors. One promising new assay format is a competition binding approach that employs time-resolved fluorescence resonance energy transfer (TR–FRET). In this assay, a FRET donor is bound to the kinase via a purification tag, whereas a FRET acceptor is bound via a tracer-labeled inhibitor. Displacement of the tracer by an unlabeled inhibitor eliminates FRET between the fluorophores and provides a readout on binding. Although promising, this technique has so far been limited in applicability in part by a lack of signal strength is some cases and also by an inability to predict whether a particular tagging strategy will show robust FRET. In this work, we sought to better understand the factors that give rise to a strong FRET signal in this assay. We determined the magnitude of FRET for several tyrosine kinases using different purification tags (biotin, glutathione S-transferase [GST], and His) placed at either the N terminus or C terminus of the kinase. It was observed that coupling the FRET acceptor to the kinase C terminus using a biotin/streptavidin interaction resulted in the greatest increase in FRET. Specifically, for multiple kinases, the signal/background ratio was at least 3-fold better using C-terminal biotinylation compared with tagging at the N terminus using a His/anti-His antibody or GST/anti-GST antibody interaction. In one case, the FRET signal using C-terminal biotin tagging was more than 150-fold over background. This strong FRET signal facilitated development of improved inhibitor binding assays that required only tens of picomolar enzyme or tracer-labeled inhibitor. Together, these results indicate that C-terminal biotinylation is a promising tagging strategy for developing an optimal FRET-based competition binding assay for tyrosine kinases.  相似文献   

13.
We have developed a continuous fluorescence assay based on fluorescence resonance energy transfer (FRET) for the monitoring of RNA helicase activity in vitro. The assay is tested using the hepatitis C virus (HCV) NS3 helicase as a model. We prepared a double-stranded RNA (dsRNA) substrate with a 5′ fluorophore-labeled strand hybridized to a 3′ quencher-labeled strand. When the dsRNA is unwound by helicase, the fluorescence of the fluorophore is emitted following the separation of the strands. Unlike in conventional gel-based assays, this new assay eliminates the complex and time-consuming steps, and can be used to simply measure the real-time kinetics in a single helicase reaction. Our results demonstrate that Alexa Fluor 488 and BHQ1 are an effective fluorophore-quencher pair, and this assay is suitable for the quantitative measurement of the RNA helicase activity of HCV NS3. Moreover, we found that several extracts of marine organisms exhibited different inhibitory effects on the RNA and DNA helicase activities of HCV NS3. We propose that this assay will be useful for monitoring the detailed kinetics of RNA unwinding mechanisms and screening RNA helicase inhibitors at high throughput.  相似文献   

14.
NIMA (never in mitosis arrest)-related kinase 2 (Nek2) is a serine/threonine kinase required for centrosome splitting and bipolar spindle formation during mitosis. Currently, two in vitro kinase assays are commercially available: (i) a radioactive assay from Upstate Biotechnology and (ii) a nonradioactive fluorescence resonance energy transfer (FRET) assay from Invitrogen. However, due to several limitations such as radioactive waste management and lower sensitivity, a need for more robust nonradioactive assays would be ideal. Accordingly, we have developed four quantitative and sensitive nonradioactive Nek2 in vitro kinase assays: (i) a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) using peptides identified from a physiologically relevant protein substrate, (ii) DELFIA using Nek2 itself, (iii) a homogeneous time-resolved FRET assay termed LANCE, and (iv) A method of detecting phosphorylated products by HPLC. The DELFIA and LANCE assays are robust in that they generated more than 10-fold and 20-fold increases in signal-to-noise ratios, respectively, and are amenable to robotic high-throughput screening platforms. Validation of all four assays was confirmed by identifying a panel of small molecule ATP competitive inhibitors from an internal corporate library. The most potent compounds consistently demonstrated less than 100 nM activity regardless of the assay format and therefore were complementary. In summary, the Nek2 in vitro time-resolved FRET kinase assays reported are sensitive, quantitative, reproducible and amenable to high-throughput screening with improved waste management over radioactive assays.  相似文献   

15.
The human beta-secretase, BACE, plays a key role in the generation of pathogenic amyloid beta-peptide (Abeta) in Alzheimer's disease and has been identified as an ideal target for therapy. Previous studies reported the monitoring of BACE activity in vitro utilizing chemical synthesized sensors. Here we describe the first genetically encoded FRET probe that can detect BACE activity in vivo. The FRET probe was constructed with the BACE substrate site (BSS) and two mutated green fluorescent proteins. In living cell, the FRET probe was directed to the secretory pathway and anchored on the cell surface to measure BACE enzymatic activity. The results show that the FRET probe can be cleaved by BACE effectively in vivo, suggesting that the probe can be used for real-time monitoring of BACE activity. This assay provides a novel platform for BACE inhibitor screening in vivo.  相似文献   

16.
The major components of the cartilage extracellular matrix are type II collagen and aggrecan. Matrix metalloproteinase 13 (MMP-13) has been implicated as the protease responsible for collagen degradation in cartilage during osteoarthritis (OA). In the present study, a triple-helical FRET substrate has been utilized for high throughput screening (HTS) of MMP-13 with the MLSCN compound library (n approximately 65,000). Thirty-four compounds from the HTS produced pharmacological dose-response curves. A secondary screen using RP-HPLC validated 25 compounds as MMP-13 inhibitors. Twelve of these compounds were selected for counter-screening with 6 representative MMP family members. Five compounds were found to be broad-spectrum MMP inhibitors, 3 inhibited MMP-13 and one other MMP, and 4 were selective for MMP-13. One of the selective inhibitors was more active against MMP-13 triple-helical peptidase activity compared with single-stranded peptidase activity. Since the THP FRET substrate has distinct conformational features that may interact with MMP secondary binding sites (exosites), novel non-active site-binding inhibitors may be identified via HTS protocols utilizing such assays.  相似文献   

17.
Meldal M 《Biopolymers》2002,66(2):93-100
Fluorescent quenched substrate libraries are a very powerful tool for investigation of protease activity and specificity. Particularly, libraries where the fluorescent resonance energy transfer (FRET) pair is 3-nitrotyrosine and 2-amino-benzamide are easy to prepare by split and combine synthesis to yield a one-bead one-compound library format. The solid support is critical for the successful hydrolysis of the resin-bound substrates. For this purpose, a range of highly porous poly(ethylene glycol) (PEG)-based resins have been developed. Active substrates yield highly fluorescent beads and these are selected under a fluorescence microscope or isolated on a bead sorter. Edman sequence analysis yields the substrate sequence, the cleavage point, and the degree of conversion. The method gives a complete map of the substrate specificity, and substrates with high affinity for the active site can be selected. These may in turn be used as inhibition indicators in a second solid phase library assay for enzyme inhibition where each single bead is transformed into an assay container. The substrate is attached to temporarily shielded functional groups after completion of inhibitor library synthesis. By using a photolabile linker and ladder synthesis, the active inhibitors may be rapidly identified by mass spectrometry. In each bead, the putative inhibitor competes with the substrate attached for binding to the enzyme, and when the inhibitor binds strongly, the substrate remains intact and quenched. Thus dark beads indicate inhibitors, and these may be isolated using a bead-sorter and the structure determined by mass spectrometry. A selection of the best substrates and inhibitors should always be resynthesized for solution kinetics and confirmation of the results obtained on solid support. The inhibitor assay is almost free from false positives, which is a consequence of combining the binding of the protease to the inhibitor with observation of activity toward a FRET substrate. The K(i) of the identified inhibitors are typically in the nM range.  相似文献   

18.
Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM).  相似文献   

19.
This report describes the development, optimization, and implementation of a miniaturized cell-based assay for the identification of small-molecule insulin mimetics and potentiators. Cell-based assays are attractive formats for compound screening because they present the molecular targets in their cellular environment. A fluorescence resonance energy transfer (FRET) cell-based assay that measures the insulin-dependent colocalization of Akt2 fused with either cyan fluorescent protein or yellow fluorescent protein to the cellular membrane was developed. This ratiometric FRET assay was miniaturized into a robust, yet sensitive 3456-well nanoplate assay with Z' factors of approximately 0.6 despite a very small assay window (less than twofold full activation with insulin). The FRET assay was used for primary screening of a large compound collection for insulin-receptor agonists and potentiators. To prioritize compounds for further development, primary hits were tested in two additional assays, a biochemical time-resolved fluorescence resonance energy transfer assay to measure insulin-receptor phosphorylation and a translocation-based imaging assay. Results from the three assays were combined to yield 11 compounds as potential leads for the development of insulin mimetics or potentiators.  相似文献   

20.
A novel fluorescent substrate (termed FRET-HA) to quantitatively assess hyaluronidase activity was developed. Hyaluronan (HA), the major substrate for hyaluronidase, was dual labeled with fluorescein amine and rhodamine B amine. The fluorescein amine fluorescence signal was significantly quenched and the rhodamine B amine signal was significantly enhanced due to fluorescence resonance energy transfer (FRET). In the presence of bovine testes hyaluronidase, cleavage of HA disrupted FRET, resulting in a loss of the fluorescein amine quenching that was dependent on both enzyme concentration and time. Increase in the fluorescein amine signal could be conveniently monitored in both noncontinuous and continuous fashions. The Km value for bovine testes hyaluronidase was determined using FRET-HA in a continuous fluorescent assay. Importantly, the estimated Km value for bovine testes hyaluronidase using FRET-HA as the substrate was in excellent agreement with Km values reported previously for this enzyme using native (i.e., unlabeled) HA. Therefore, FRET-HA is a reliable substrate for quantitatively assessing the HA/hyaluronidase molecular interaction. The simplicity, sensitivity, and versatility of the FRET-HA substrate suggest that it will have utility in a variety of assay platforms and should be a new tool for assessing hyaluronidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号