首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most enduring surprises about the genetic history of Late Pleistocene populations is that continuity is often disturbed by upheaval. In fact, studies that support population continuity are increasingly rare in humans, a variety of vertebrate taxa, and vascular plants (Hofreiter & Stewart 2009; Burbrink et al. 2016). Perhaps such continuity should not be expected as the Pleistocene is marked by episodes of climate change, glaciation and the invasions of humans into previously isolated areas. Although fossils are one of the primary sources for inferring population continuity, a problem with fossil material is that, even if similar morphological forms might exist in a place over time, they may not be from the same genetic lineage. There are now readily available methods to assess genetic continuity solely from DNA found in fossil material, provided the record is fairly continuous. In a From the Cover article in this issue of Molecular Ecology, Loog et al. (2020) apply some of these readily available methods to analyse mitochondrial genomes and model the demography of wolves over the last 50,000 years.  相似文献   

2.
The Falkland Islands wolf Dusicyon australis is an extinct canid that was once the only endemic terrestrial mammal to inhabit the Falkland Islands. There is still a puzzling picture of the morphological adaptations of this wolf that quickly evolved from its mainland fossil ancestor: Dusicyon avus. We employ a geometric morphometric approach to identify patterns of skull shape variation in extant canids and Dusicyon spp. The Falkland Islands wolf and its fossil ancestor show a more carnivorous feeding morphology than other South American foxes, and they cluster morphologically with jackals. This supports convergence in skull shape between Dusicyon and Old World canids, although the convergence is not as strong as that exhibited by their sister hyper‐ and hypocarnivorous taxa.  相似文献   

3.
Evolutionary history of the Coccolithoviridae   总被引:1,自引:0,他引:1  
We recently determined the genome sequence of the Coccolithoviridae strain Emiliania huxleyi virus 86 (EhV-86), a giant double-stranded DNA (dsDNA) algal virus from the family Phycodnaviridae that infects the marine coccolithophorid E. huxleyi. Here, we determine the phylogenetic relationship between EhV-86 and other large dsDNA viruses. Twenty-five core genes common to nuclear-cytoplasmic large dsDNA virus genomes were identified in the EhV-86 genome; sequence from eight of these genes were used to create a phylogenetic tree in which EhV-86 was placed firmly with the two other members of the Phycodnaviridae. We have also identified a 100-kb region of the EhV-86 genome which appears to have transferred into this genome from an unknown source. Furthermore, the presence of six RNA polymerase subunits (unique among the Phycodnaviridae) suggests both a unique evolutionary history and a unique lifestyle for this intriguing virus.  相似文献   

4.
Evolutionary history of the grasses   总被引:45,自引:0,他引:45  
Kellogg EA 《Plant physiology》2001,125(3):1198-1205
  相似文献   

5.
6.
Douglas SE 《The Biological bulletin》1999,196(3):397-9; discussion 399
  相似文献   

7.
The group of small poor cods and pouts from the genus Trisopterus, belonging to the Gadidae family, comprises four described benthopelagic species that occur across the North-eastern Atlantic, from the Baltic Sea to the coast of Morocco, and the Mediterranean. Here, we combined molecular data from mitochondrial (cytochrome b) and nuclear (rhodopsin) genes to confirm the taxonomic status of the described species and to disentangle the evolutionary history of the genus. Our analyses supported the monophyly of the genus Trisopterus and confirmed the recently described species Trisopterus capelanus. A relaxed molecular clock analysis estimated an Oligocene origin for the group (∼30 million years ago; mya) indicating this genus as one of the most ancestral within the Gadidae family. The closure and re-opening of the Strait of Gibraltar after the Messinian Salinity Crisis (MSC) probably triggered the speciation process that resulted in the recently described T. capelanus.  相似文献   

8.
A bioinformatics analysis was conducted on the four members of the uterine serpin (US) family of serpins. Evolutionary analysis of the protein sequences and 86 homologous serpins by maximum parsimony and distance methods indicated that the uterine serpins proteins form a clade distinct from other serpins. Ancestral sequences were reconstructed throughout the evolutionary tree by parsimony. These suggested that some branches suffered a high ratio of nonsynonymous to synonymous mutations, suggesting episodes of adaptive evolution within the serpin family. Analysis of the sequences by neutral evolutionary distance methods suggested that the uterine serpins diverged from other serpins prior to the divergence of the mammals from other vertebrates. The porcine uterine serpins are paralogs that diverged from a single common ancestor within the Sus genus after pigs separated from other artiodactyls. The uterine serpins contain several protein kinase C and tyrosine kinase phosphorylation sites. These sites may be important for the lymphocyte-inhibitory activity of OvUS if, like other basic proteins, OvUS can cross the cell membrane of an activated lymphocyte. Internalized OvUS could serve as an alternative target to protein kinases important for the mitogenic response to antigens.  相似文献   

9.
10.
Analyses of Y chromosome haplotypes uniquely provide a paternal picture of evolutionary histories and offer a very useful contrast to studies based on maternally inherited mitochondrial DNA (mtDNA). Here we used a bioinformatic approach based on comparison of male and female sequence coverage to identify 4.7 Mb from the grey wolf (Canis lupis) Y chromosome, probably representing most of the male‐specific, nonampliconic sequence from the euchromatic part of the chromosome. We characterized this sequence and then identified ≈1,500 Y‐linked single nucleotide polymorphisms in a sample of 145 resequenced male wolves, including 75 Finnish wolf genomes newly sequenced in this study, and in 24 dogs and eight other canids. We found 53 Y chromosome haplotypes, of which 26 were seen in grey wolves, that clustered in four major haplogroups. All four haplogroups were represented in samples of Finnish wolves, showing that haplogroup lineages were not partitioned on a continental scale. However, regional population structure was indicated because individual haplotypes were never shared between geographically distant areas, and genetically similar haplotypes were only found within the same geographical region. The deepest split between grey wolf haplogroups was estimated to have occurred 125,000 years ago, which is considerably older than recent estimates of the time of divergence of wolf populations. The distribution of dogs in a phylogenetic tree of Y chromosome haplotypes supports multiple domestication events, or wolf paternal introgression, starting 29,000 years ago. We also addressed the disputed origin of a recently founded population of Scandinavian wolves and observed that founding as well as most recent immigrant haplotypes were present in the neighbouring Finnish population, but not in sequenced wolves from elsewhere in the world, or in dogs.  相似文献   

11.
12.
The evolutionary history of human chromosome 20 in primates was investigated using a panel of human BAC/PAC probes spaced along the chromosome. Oligonucleotide primers derived from the sequence of each human clone were used to screen horse, cat, pig, and black lemur BAC libraries to assemble, for each species, a panel of probes mapping to chromosomal loci orthologous to the loci encompassed by the human BACs. This approach facilitated marker-order comparison aimed at defining marker arrangement in primate ancestor. To this goal, we also took advantage of the mouse and rat draft sequences. The almost perfect colinearity of chromosome 20 sequence in humans and mouse could be interpreted as evidence that their form was ancestral to primates. Contrary to this view, we found that horse, macaque, and two New World monkeys share the same marker-order arrangement from which the human and mouse forms can be derived, assuming similar but distinct inversions that fully account for the small difference in marker arrangement between humans and mouse. The evolutionary history of this chromosome unveiled also two centromere repositioning events in New World monkey species.  相似文献   

13.
14.
Evolutionary history of the enolase gene family   总被引:4,自引:0,他引:4  
Tracy MR  Hedges SB 《Gene》2000,259(1-2):129-138
The enzyme enolase [EC 4.2.1.11] is found in all organisms, with vertebrates exhibiting tissue-specific isozymes encoded by three genes: alpha (alpha), beta (beta), and gamma (gamma) enolase. Limited taxonomic sampling of enolase has obscured the timing of gene duplication events. To help clarify the evolutionary history of the gene family, cDNAs were sequenced from six taxa representing major lineages of vertebrates: Chiloscyllium punctatum (shark), Amia calva (bowfin), Salmo trutta (trout), Latimeria chalumnae (coelacanth), Lepidosiren paradoxa (South American lungfish), and Neoceratodus forsteri (Australian lungfish). Phylogenetic analysis of all enolase and related gene sequences revealed an early gene duplication event prior to the last common ancestor of living organisms. Several distantly related archaebacterial sequences were designated as 'enolase-2', whereas all other enolase sequences were designated 'enolase-1'. Two of the three isozymes of enolase-1, alpha- and beta-enolase, were discovered in actinopterygian, sarcopterygian, and chondrichthian fishes. Phylogenetic analysis of vertebrate enolases revealed that the two gene duplications leading to the three isozymes of enolase-1 occurred subsequent to the divergence of living agnathans, near the Proterozoic/Phanerozoic boundary (approximately 550Mya). Two copies of enolase, designated alpha(1) and alpha(2), were found in the trout and are presumed to be the result of a genome duplication event.  相似文献   

15.
The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs.  相似文献   

16.
17.
18.
Exon shuffling has been characterized as one of the major evolutionary forces shaping both the genome and the proteome of eukaryotes. This mechanism was particularly important in the creation of multidomain proteins during animal evolution, bringing a number of functional genetic novelties. Here, genome information from a variety of eukaryotic species was used to address several issues related to the evolutionary history of exon shuffling. By comparing all protein sequences within each species, we were able to characterize exon shuffling signatures throughout metazoans. Intron phase (the position of the intron regarding the codon) and exon symmetry (the pattern of flanking introns for a given exon or block of adjacent exons) were features used to evaluate exon shuffling. We confirmed previous observations that exon shuffling mediated by phase 1 introns (1-1 exon shuffling) is the predominant kind in multicellular animals. Evidence is provided that such pattern was achieved since the early steps of animal evolution, supported by a detectable presence of 1-1 shuffling units in Trichoplax adhaerens and a considerable prevalence of them in Nematostella vectensis. In contrast, Monosiga brevicollis, one of the closest relatives of metazoans, and Arabidopsis thaliana, showed no evidence of 1-1 exon or domain shuffling above what it would be expected by chance. Instead, exon shuffling events are less abundant and predominantly mediated by phase 0 introns (0-0 exon shuffling) in those non-metazoan species. Moreover, an intermediate pattern of 1-1 and 0-0 exon shuffling was observed for the placozoan T. adhaerens, a primitive animal. Finally, characterization of flanking intron phases around domain borders allowed us to identify a common set of symmetric 1-1 domains that have been shuffled throughout the metazoan lineage.  相似文献   

19.
The grey wolf (Canis lupus) and coyote (C. latrans) are highly mobile carnivores that disperse over great distances in search of territories and mates. Previous genetic studies have shown little geographical structure in either species. However, population genetic structure is also influenced by past isolation events and population fluctuations during glacial periods. In this study, control region sequence data from a worldwide sample of grey wolves and a more limited sample of coyotes were analysed. The results suggest that fluctuating population sizes during the late Pleistocene have left a genetic signature on levels of variation in both species. Genealogical measures of nucleotide diversity suggest that historical population sizes were much larger in both species and grey wolves were more numerous than coyotes. Currently, about 300 000 wolves and 7 million coyotes exist. In grey wolves, genetic diversity is greater than that predicted from census population size, reflecting recent historical population declines. By contrast, nucleotide diversity in coyotes is smaller than that predicted by census population size, reflecting a recent population expansion following the extirpation of wolves from much of North America. Both species show little partitioning of haplotypes on continental or regional scales. However, a statistical parsimony analysis indicates local genetic structure that suggests recent restricted gene flow.  相似文献   

20.
Groups of recently diverged species offer invaluable glimpses into the history and genetic basis of speciation and phenotypic evolution. In this report, we combine phylogenetic and population-genetic approaches to reconstruct the evolutionary history of the Drosophila bipectinata species complex. This complex is a group of four closely related, largely sympatric species--D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae. Using the sequences of one mitochondrial and six nuclear loci, we show that D. bipectinata and D. parabipectinata are the two most closely related species, and that together with D. malerkotliana they form a monophyletic clade to which D. pseudoananassae is a relatively distant outgroup. Genetic divergence among D. bipectinata, D. parabipectinata and D. malerkotliana is extremely low, and we estimate that these species diverged only 283,000-385,000 years ago. We also find that mitochondrial DNA shows evidence of recent gene flow across species boundaries. Despite the low genetic divergence, species of the bipectinata complex show an unusually high degree of morphological differentiation. This contrast underscores the importance of understanding the genetic basis of functional differentiation among closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号