首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhang  Hai-Feng  Zhang  Hao  Yang  Jing  Li  Hai-Ming 《Plasmonics (Norwell, Mass.)》2019,14(4):985-991
Plasmonics - In this paper, we propose a three-dimensional tunable absorber to realize a controllable unidirectional absorption and unidirectional transmission based on the plasma metamaterial,...  相似文献   

2.

A dielectric metamaterial absorber has been proposed, which consists of fractal-like structure and conductive sheet. The fractal-like structure is made by the high permittivity dielectric and also is covered by the conductive sheet. Absorptivity of such a dielectric metamaterial absorber is 99.1%, which can be found at 10.196 GHz; meanwhile, the absorber is polarization insensitive. To enhance the bandwidth of absorber, a novel absorber also is proposed, whose bandwidth is 0.566 GHz, which ranges from 9.752 to 10.318 GHz, and relative bandwidth is 5.64%. The maximum absorptivity can reach to 99.8%, and the proposed absorber also is polarization insensitive. In the meantime, the absorber shows excellent performance which is incident angle insensitive; when the incident angle is increased to 70°, the absorptivity is larger than 75%.

  相似文献   

3.
Liu  Juefu  Chen  Jiao  Liu  Huan  Liu  Yuanyuan  Zhu  Lu 《Plasmonics (Norwell, Mass.)》2020,15(5):1517-1524

A three-dimensional cross-shaped fractal metamaterial absorber with ultra-wide wavelength band, polarization-independence and wide-angle, is numerically investigated by the finite-difference time-domain method. In this absorber, the solar energy is trapped by the cross-shaped fractal of the upper layer, and the Si-ring filled with iron in the middle layer and the wavelength band can be broadened by the self-similarity of fractal structure. The absorber exhibits absorptivity higher than 91% for the wavelengths from 400 to 2000 nm and an absorption bandwidth of about 133%. Furthermore, the proposed absorber realizes polarization independence, and the maximum incident angle is 76°. However, as the iron material applied in the nano-metamaterial absorber (NMA) can be easily oxidized and rusted, it is replaced by nickel with characteristics such as corrosion resistance and high-temperature resistance; thus, an improved NMA is obtained. The improved absorber not only eliminates the corrosion-prone defects of the above proposed structure but also maintains polarization independence and high absorption and widens the angle of incidence up to 79° and thereby can be applied in many areas, such as solar energy harvesting.

  相似文献   

4.

In this paper, the idea of square fractal geometry has been utilized to introduce a tunable wideband graphene-based perfect plasmonic absorber in the near-infrared region. It consists of a MgF2 layer and an array of gold squares fractal loaded on a graphene layer. In the designed absorber a single layer of graphene has been used instead of multilayered graphene structures. The structure is polarization-insensitive under normal incidence due to the geometric symmetry. The absorption and bandwidth of the structure are almost insensitive to the incident angle up to 15° and 45° for TE and TM polarizations, respectively. Moreover, by choosing appropriate structural parameters, the resonance wavelength of the desired plasmonic absorber can be controlled. The absorption of the introduced structure can be tuned by changing the chemical potential of the graphene. Therefore, the proposed fractal absorber can act as switch and inverter at λ = 1995 nm. Furthermore, the equivalent circuit model of the absorber has been derived to confirm the validity of the simulation results. The superiorities of our fractal absorber are wide full-width at half-maximum of 406 nm, multi-applicant, perfect absorption, and fabrication feasibility due to the simple structure with the maximum absorption tolerance error of 5.12%.

  相似文献   

5.
A new and simple design of quad-band metamaterial absorber for terahertz frequency has been proposed. The unit cell of the absorber is composed of a top metallic patch having H-shaped slot and a ground metallic plane, both separated by a dielectric layer. The proposed design is capable of providing four distinct absorption peaks over at 0.81, 1.98, 3.25, and 3.50 THz. Our design is a step ahead of the previously proposed terahertz absorbers for its simplistic design approach which removes the fabrication difficulty. Interestingly, rather placing multiple resonators in a single unit cell, we able to accommodate multiple orders of resonances in the proposed design using only a single metallic structure to achieve multiband absorbance. The sensing performance of the absorber in terms of surrounding index is also analyzed. Moreover, we have shown how the proposed structure can be easily converted into a frequency tunable absorber using a simple stub without changing the overall geometry of the absorber. This fast and easy frequency tunability feature is an additional advantage over the simple design of the structure. Also, we lead our work to its upgradation into a polarization tunable absorber where the absorption frequencies are controllable by the polarization of the incident light. The vibrant design of the proposed absorber is expected to find application in detection, imaging, radar cross-section (RCS) reduction, and sensing-related activities.  相似文献   

6.
We design and numerically investigate an optical absorber consisting of the sub-wavelength dielectric grating covered by continuous thin aluminum film. In this absorber, the aluminum film act as an efficient absorbing material because of the enhanced electric field in the air nano-grooves, and the absorption spect+rum can be manipulated by Fabry-Perot cavity mode resonance. According to the spectrum manipulation mechanism, the wavelength of absorption peak can be tuned by changing the heights and widths of the air nano-grooves. More importantly, the high absorption is very robust to the incident angle around the designed wavelength. From the nanofabrication point of view, the light absorber can be fabricated more easily without the need for ion or electrochemical etching of metal and it is easy to be integrated into complex photonic devices.  相似文献   

7.
High absorption efficiency is particularly desirable for various microtechnological applications. In this paper, a nearly perfect terahertz absorber for transverse magnetic (TM) polarization based on T-shaped InSb array is proposed and numerically investigated. Incident wave at the Fabry-Perot resonant frequency can be totally absorbed into the narrow grooves between the two adjacent T-shaped InSb arms. The absorption mechanism is theoretically and numerically studied by using the Fabry-Perot model and the finite element method (FEM), respectively. It is found that the proposed absorber has large angle tolerance. Moreover, the absorption peak can be controlled by varying the temperature. Furthermore, a new absorption peak will emerge while breaking the symmetry of the T-shaped InSb array. This tunable and angle-independent THz perfect absorber may find important applications in THz devices such as microbolometers, coherent thermal emitters, solar cells, photo detectors, and sensors.  相似文献   

8.
We propose a novel polarization independent Salisbury screen absorber to provide tunable resonant absorption at terahertz (THz) frequencies. The Salisbury screen absorber is designed by using a planar array of thin gold nanodisks arranged in a square lattice. Certain configurations of Salisbury screen have multiple distinctive absorption bands that support near-unity/FWHM absorption bandwidth reaching 36 THz/169 THz, respectively. Moreover, the absorption bandwidth depends upon the optical thickness of the dielectric spacer between the metasurface and the metallic ground plane. The proposed tunable Salisbury screen absorber can find practical applications in photonic detection, imaging, sensing, and solar cells at optical frequencies.  相似文献   

9.

A tunable multi-band metamaterial perfect absorber is designed in this paper. The absorber made of a composite array of gold elliptical and circular disks on a thick metallic substrate, separated by a thin dielectric spacer. The absorptivity and the field enhancement of proposed structures are numerically investigated by the finite difference time domain method. Three absorption peaks (1.15, 1.55, and 2.05 μm) with the maximal absorption of 99.2, 99.7, and 97.3% have been achieved, respectively. By altering the dimensions of associated geometric parameters in the structure, three resonance wavelengths can be tuned individually. Physical mechanism of the multi-band absorption is construed as the resonance of magnetic polaritons. And the absorber exhibits the characteristics that are insensitive to the polarization angle due to its symmetry. The research results can have access to selective control of thermal radiation and the design of multi-band photodetectors.

  相似文献   

10.
We propose a metal-dielectric-metal super absorber based on propagating and localized surface plasmons which exhibits a near perfect absorption in the visible and near-infrared spectrum. The absorber consists of Ag/Al2O3/Al triple layers in which the top Al layer is a periodic nano disk array. The absorption spectrum can be easily controlled by adjusting the structure parameters including the period and radius of the nano disk and the maximal absorption can reach 99.62 %. We completely analyze the PSPs and LSPs modes supported by the MDM structure and their relationship with the ultrahigh absorption. Moreover, we propose a novel idea to further enhance the absorption by exciting the PSPs and high-order LSPs modes simultaneously, which is different from the previous works. This kind of absorber using stable inexpensive Al instead of noble metal Au or Ag is an appropriate candidate for photovoltaics, spectroscopy, photodetectors, sensing, and surface-enhanced Raman spectroscopy (SERS).  相似文献   

11.

A five-band polarization-insensitive perfect metamaterial absorber (PMA) is reported in this paper for THz detection and sensing applications. The proposed absorber is constructed using interconnected circular ring elements enclosed by a square loop. The ring elements are interconnected using short strip lines which increases the electrical length to offer resonance at the lower frequencies of the THz regime without increasing the electrical length. The proposed absorber has a footprint of 0.12 λeff?×?0.12 λeff where λeff is the effective wavelength calculated at the lowest operating frequency. The absorber provides 92%, 84%, 90%, 100%, and 100% absorption at 0.24, 0.56, 0.65, 0.82, and 0.95 THz, respectively. The proposed structure offers structural symmetry, and hence, it is polarization-insensitive. The proposed five-band absorber has good angular stability consistent with many research works reported in the literature and has a small frequency ratio of 1:2.3:2.7:3.4:3.9. The proposed absorber can be used as a permittivity sensor and its sensitivity is estimated to vary from 5.8 GHz/permittivity unit (PU) to 23.56 GHz/PU.

  相似文献   

12.
A new metamaterial absorber is designed and characterized numerically for the harvesting of solar energy. The design is composed of three layers in which the interaction among them gives rise to the plasmonic resonances. The main operation frequency range of the proposed structure is chosen to be the visible regime. However, the design is also analyzed for the infrared and ultraviolet regimes. In order to characterize the absorber, some parametric studies with respect to the dimensions of the structure are carried out. According to the results, it is found that the proposed metamaterial absorber has 98.2 % absorption capability at 445.85 THz and 99.4 % absorption capability between 624 and 658.3 THz. Moreover, the polarization dependency of the structure is examined and it is found that the design operates well as a perfect absorber with polarization independency for the studied frequency range. As a result, the proposed metamaterial absorber can be used for solar energy harvesting as it provides multiple perfect absorption bands in the visible regime.  相似文献   

13.

We present a multi-band terahertz absorber formed by periodic square metallic ribbon with T-shaped gap and a metallic ground plane separated by a dielectric layer. It is demonstrated that absorption spectra of the proposed structure consist of four absorption peaks located at 1.12, 2.49, 3.45, and 3.91 THz with high absorption coefficients of 98.0, 98.9, 98.7, and 99.6%, respectively. It is demonstrated that the proposed absorber has the tunability from single-band to broadband by changing the length of square metallic ribbon and we can also select or tune the frequencies which we want to use by changing polarization angles. Importantly, the quality factor Q at 3.91 THz is 30.1, which is 5.6 times higher than that of 1.12 THz. These results indicate that the proposed absorber has a promising potential for devices, such as detection, sensing, and imaging.

  相似文献   

14.
We present a meta-cone absorber based on metamaterials which can absorb nearly all incident light in the near-infrared spectrum. The absorber has an ultrahigh absorption with a broad receiving angle and independence of polarization state. This absorption enhancement can be attributed to the excitation of slow light mode and localized surface plasmon resonances (LSPR). In addition, we use slow light theory to explain why incident light with different wavelengths are trapped at different positions. We believe our work will provide a promising candidate as absorbing elements in technical applications and scientific research.  相似文献   

15.
We present a broadband plasmonic metamaterial absorber in the infrared region based on localized surface plasmon polaritons (LSPPs). The unit cell of the proposed metamaterial absorber consists of a multi-cavity structure, in which absorption resonances can be tuned independently through the modification of the width and shift of metallic walls. In order to avoid the degeneration between two contiguous resonances, which dramatically reduces the bandwidth, we introduce a zigzag design rule to arrange the cavities within a compact unit. Thus, the possible number of resonances is greatly increased, enabling an ultrabroadband absorption. A broadband absorber is demonstrated with only a few-layer structure and it also has an incident-angle-insensitive feature. Our results have potential applications in photovoltaic devices, emitters, sensors, and camouflage systems.  相似文献   

16.
Plasmonics - We present a hybrid Tamm system targeting the tunable multichannel absorber. The proposed optical absorber is analyzed and investigated by using the transfer matrix method (TMM). The...  相似文献   

17.
Recently, metamaterial absorbers have received tremendous amount of interest because of their remarkable ability to manipulate the amplitude, phase, and polarization of light. However, most absorbers rely on the direct coupling of electric or magnetic field with external excitation, which lead to inevitable energy leakage to the surrounding environment and depress the quality factor of the structure. In this work, we investigate the multiband absorption property by exciting dark plasmonic modes in reflective symmetric and asymmetric metamaterials. Theoretically, the existence of dark plasmonic modes in asymmetric metamaterials is unambiguously illustrated by the improved eigen-mode theory. With the introduction of asymmetry, dark modes in metamaterials can be easily excited by normal incident plane wave. Moreover, we also directly excite the dark modes in symmetric absorber with oblique incidence. The dark modes splitting mechanism is also clarified with the excitation of designer surface plasmon. Dominated by magnetic dipole or higher-order multipole, these dark modes possess high quality factors (Q). Numerical results indicate that the metamaterial absorber maintains high absorbance within a wide-angle incidence (0~50°). The high Q asymmetric metamaterial absorber can be an excellent candidate for multiband plasmonic sensor.  相似文献   

18.
In this article, we present a simple absorber design which enables dual-band near-perfect absorption at infrared (IR) frequencies. The absorber is an unpatterned hBN/dielectric/hBN triple layer, with a 1150-nm-thick hBN film as the top layer, a 850-nm-thick dielectric film as the middle layer, and a hBN substrate. Unlike the metal/dielectric/metal triple layer, it is found that the high efficiency absorption at specific wavelengths is mainly caused by two mechanisms: Fabry-Perot (FP) resonances and surface phonons. The absorption response is found sensitive to the top and middle layers. The two mechanisms can be coupled to affect the absorption spectra by choosing a proper thickness of the top and middle layers.  相似文献   

19.
A broadband and ultra-thin absorber in the infrared region is proposed. The structure is composed of three layers, and the most remarkable difference is that two hybrid materials (Sn and InSb) are used in the top layer. The numerical results show that a broadband perfect absorption from 85.2 to 114.3 THz can be achieved for either transverse electric or magnetic polarization waves due to the effect of using hybrid materials. Moreover, the power loss and surface current distribution in the absorber are investigated to explain the physical mechanism of high absorption. The metamaterial absorber is ultra-thin, having total thickness of 0.3 μm, i.e.,λ/10 with respect to the center frequency of the high absorption bands. The proposed hybrid materials which are used in the same layer provides a useful way to realize a broadband perfect absorber in the infrared region and it is important for a variety of applications, such as solar energy harvest, sensors, and integrated photodetectors .  相似文献   

20.
Da  Yun  Xie  Meiqiu 《Plasmonics (Norwell, Mass.)》2021,16(2):589-597

Nanostructured surface, a promising photon management strategy, enables to enhance photon-to-heat conversion efficiency by manipulating spectral radiative properties ranging from solar spectrum (0.3–2.5 μm) to mid-infrared spectrum (2.5–20 μm). Here, a core–shell nanocone structured surface made of silica core and tungsten shell as a solar selective absorber is introduced. The photothermal conversion efficiency (PTCE) is calculated in consideration of solar spectrum absorption and mid-infrared emission. It is obvious that high solar spectrum absorption and low mid-infrared emission are beneficial for high PTCE. The influence of structural parameters on the PTCE is studied, and then the absorption enhancement mechanism is elucidated in detail. Meanwhile, the influences of incident angle, polarized state, and lattice arrangement are also presented. The calculated results exhibit that our optimized solar absorber possesses the total solar absorption of 97.3% and total thermal emission of 7.6%, resulting in a maximum PTCE of 91.4% under one sun illumination conditions at normal incidence. Moreover, our solar selective absorber is independent to the incident angle and polarization state. The excellent photothermal conversion performance with wide-angle and polarization-insensitive properties for the solar selective absorber can serve as a good candidate for various solar thermal applications including seawater desalination, steam generation, thermophotovoltaic, and photocatalysis.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号