首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gain-of-function Scn5a+/ΔKPQ mutation in the cardiac Na+ channel causes human long QT type 3 syndrome (LQT3) associated with ventricular arrhythmogenesis. The KATP channel-opener nicorandil (20 μM) significantly reduced arrhythmic incidence in Langendorff-perfused Scn5a+/Δ hearts during programmed electrical stimulation; wild-types (WTs) showed a total absence of arrhythmogenicity. These observations precisely correlated with alterations in recently established criteria for re-entrant excitation reflected in: (1) shortened left-ventricular epicardial but not endocardial monophasic action potential durations at 90% repolarization (APD90) that (2) restored transmural repolarization gradients, ΔAPD90. Scn5a+/Δ hearts showed longer epicardial but not endocardial APD90s, giving shorter ΔAPD90s than WT hearts. Nicorandil reduced epicardial APD90 in both Scn5a+/Δ and WT hearts thereby increasing ΔAPD90. (3) Reduced epicardial critical intervals for re-excitation; Scn5a+/Δ hearts showed greater differences between APD90 and ventricular effective refractory period than WT hearts that were reduced by nicorandil. (4) Reduced APD90 alternans. Scn5a+/Δ hearts showed greater epicardial and endocardial alternans than WTs, which increased with pacing rate. Nicorandil reduced these in Scn5a+/Δ hearts to levels indistinguishable from untreated WTs. (5) Flattened restitution curves. Scn5a+/Δ hearts showed larger epicardial and endocardial critical diastolic intervals than WT hearts. Nicorandil decreased these in Scn5a+/Δ and WT hearts. The presence or absence of arrhythmogenesis in Scn5a+/Δ and WT hearts thus agreed with previously established criteria for re-entrant excitation, and alterations in these precisely correlated with the corresponding antiarrhythmic effects of nicorandil. Together these findings implicate spatial and temporal re-entrant mechanisms in arrhythmogenesis in LQT3 and their reversal by nicorandil.  相似文献   

2.

Background

Loss-of-function mutations in SCN5A, the gene encoding Nav1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a +/− mice) and compared our results to those obtained in patients with loss-of-function mutations in SCN5A.

Methodology/Principal Findings

Based on ECG, 10-week-old Scn5a +/− mice were divided into 2 subgroups, one displaying severe ventricular conduction defects (QRS interval>18 ms) and one a mild phenotype (QRS≤18 ms; QRS in wild-type littermates: 10–18 ms). Phenotypic difference persisted with aging. At 10 weeks, the Na+ channel blocker ajmaline prolonged QRS interval similarly in both groups of Scn5a +/− mice. In contrast, in old mice (>53 weeks), ajmaline effect was larger in the severely affected subgroup. These data matched the clinical observations on patients with SCN5A loss-of-function mutations with either severe or mild conduction defects. Ventricular tachycardia developed in 5/10 old severely affected Scn5a +/− mice but not in mildly affected ones. Correspondingly, symptomatic SCN5A–mutated Brugada patients had more severe conduction defects than asymptomatic patients. Old severely affected Scn5a +/− mice but not mildly affected ones showed extensive cardiac fibrosis. Mildly affected Scn5a +/− mice had similar Nav1.5 mRNA but higher Nav1.5 protein expression, and moderately larger INa current than severely affected Scn5a +/− mice. As a consequence, action potential upstroke velocity was more decreased in severely affected Scn5a +/− mice than in mildly affected ones.

Conclusions

Scn5a +/− mice show similar phenotypic heterogeneity as SCN5A-mutated patients. In Scn5a +/− mice, phenotype severity correlates with wild-type Nav1.5 protein expression.  相似文献   

3.
4.
Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/−) results in mild behavior abnormalities. The Nav1.2 expression level in Scn2a+/− mice is reported to be around 50–60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO) that can survive to adulthood, with about a quarter of Nav1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.  相似文献   

5.
We investigated whether there are compensatory changes in the coronary microvasculature, cardiac lipid metabolism, and myocyte ultrastructure associated with ventricular enlargement in male rainbow trout. Epicardial tissue was sampled at different stages of sexual maturation, and we estimated arterial capillary density, intercapillary diffusion distance, and applied a diffusion model to predict PO2 at different workloads. We also measured biochemical indices of lipid metabolism and estimated fractional volumes of mitochondria and myofibrils in myocytes. Immature fish with nonenlarged ventricles had the highest capillary length densities (1620±158 mm mm−3). Maturing trout with moderate ventricular hypertrophy had lower capillary length densities (1103±58 mm mm−3) and similar diffusion distances (13.9±0.7 μm) compared with immature fish (11.7±0.9 μm). The largest ventricles had intermediate capillary length densities (1457±288 mm mm−3) and diffusion distances (12.8±0.8 μm). Modelling predicted that enlarged ventricles would not become anoxic even at maximal workloads. Biochemical markers of fatty acid metabolism and aerobic capacity were unchanged with hypertrophy. Volume densities of mitochondria and myofibrils were also not influenced by cardiac growth. In summary, ventricle hypertrophy results in expansion of the coronary capillary bed and the maintenance of the epicardial capacities for fat and oxidative metabolism.  相似文献   

6.
We investigated the effects of reducing sarcoplasmic reticular (SR) Ca2+ stores using the Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) in Langendorff-perfused mouse hearts exposed to different pro-arrhythmic agents all known to produce Ca2+-mediated arrhythmogenesis. CPA (100 and 150 nM) produced progressive (beginning over 1 min) and significant (P < 0.0001) reductions in peak amplitudes of Ca2+ transients evoked by regular stimulation in isolated Fluo-3 loaded myocytes from F/F0 = 3.2 ± 0.16 (n = 12 cells) to 1.62 ± 0.012 (n = 6 cells) and 1.53 ± 0.06 (n = 12 cells), respectively, consistent with previous reports describing reductions of store Ca2+ in other cell systems. The corresponding effects of CPA were then examined in intact hearts exposed to isoproterenol (100 nM), elevated extracellular [Ca2+] (5 mM) and caffeine (1 mM). All three agents produced ventricular tachycardia either when added alone or simultaneously with CPA during programmed electrical stimulation. However, arrhythmogenicity was not observed when such agents were added 10 min after introduction of CPA. CPA thus antagonized this Ca2+-mediated arrhythmogenesis but only under circumstances of SR Ca2+ depletion. These alterations in arrhythmogenic tendency took place despite an absence of alterations in electrogram and monophasic action potential characteristics. This was in sharp contrast to previous observations in murine, ΔKPQ-Scn5a (LQT3) and KCNE1−/− (LQT5), systems where re-entry has been implicated in arrhythmogenesis.  相似文献   

7.
1. The fat mouse Steatomys pratensis natalensis (mean body mass 37.4±0.43 (se)) has a low euthermic body temperature Tb=30.1–33.8 °C and a low basal metabolic rate (BMR)=0.50 ml O2 g−1 h−1.
2. Below an ambient temperature (Ta)=15 °C, the mice were hypothermic.
3. The lowest survivable Ta=10 °C.
4. Torpor is efficient in conserving energy between Ta=15–30 °C, below Ta=15 °C, the mice arouse.
5. Euthermic and torpid mice were hyperthermic at Ta=35 °C.
6. Thermal conductance was 0.159 ml O2 g−1 h−1 °C−1, 98.8% of the expected value.
7. Non-shivering thermogenesis (NST) was 2.196 ml O2 g−1 h−1 (3.69×BMR).
8. Maximal oxygen consumption, however, was 3.83 ml O2 g−1 h−1 (6.44×BMR), indicating that other methods of heat production are additive.
9. Because fat mice conserve energy by torpor only between Ta=15–30 °C, we suggest that torpor may be a more important mechanism for surviving food shortages than for surviving cold weather.
Keywords: Steatomys pratensis natalensis; Metabolism; Torpor; Fat mouse  相似文献   

8.
It has previously been found (1) that feeding rats a diet containing a high amount of sunflowerseed oil results in a higher coronary flow and left ventricular work of their isolated hearts as compared to hearts of rats fed hydrogenated coconut oil or lard. It was hypothesized that this phenomenon can be explained by an influence of dietary linoleic acid on prostaglandin synthesis in the heart. To verify this hypothesis rabbits and rats were fed for four weeks sunflowerseed oil (SSO), hydrogenated coconut oil (HCO) or lard (L) to a maximum of 30 to 40 per cent of the total digestable energy, and the prostaglandin release from the isolated perfused hearts and rat aortas was determined by gas chromatography and bio-assay (PGI2).For the isolated hearts of rabbits fed SSO, the release of PGE2, PGF and 6-oxo-PGF was 1.7, 0.7 and 3.0 ng min−1 g−1 dry weight respectively; when fed L, these values were 2.9, 1.1 and 5.6 ng min−1 g−1. For the isolated hearts of rats fed SSO, HCO or L, the total release of PGE2, PGD2, PGF and thromboxane B2 (TXB2) was 5.9, 5.8 and 5.6 ng min−1 g−1 respectively; the release of 6-oxo-PGF was 3.4, 5.7 and 6.4 ng min−1 g−1 respectively. Relatively, 26% PGE2, 13% PGD2, 8% PGF, 6% TXB2 and 47% 6-oxo-PGF were released. For the isolated aortas of rats fed SSO or HCO, the release of PGI2-like activity was 0.37 ± 0.05 and 0.49 ± 0.05 ng min−1 cm−2. The release of PGI2-like activity from hearts of EFA-deficient rats was about 20% of that from control hearts.We conclude that, although feeding sunflowerseed oil, with respect to feeding hydrogenated coconut oil or lard, does increase coronary flow and left ventricular work, it does not increase the basal prostaglandin production in the isolated rat or rabbit heart; instead there is a tendency for a lower PGI2 synthesis.  相似文献   

9.
Red tide blooms of Cochlodinium polykrikoides in a coastal cove   总被引:1,自引:0,他引:1  
Successive blooms of the dinoflagellate Cochlodinium polykrikoides occurred in Pettaquamscutt Cove, RI, persisting from September through December 1980 and again from April through October 1981. Cell densities varied from <100 cells L−1 at the onset of the bloom and reached a maximum density exceeding 3.4 × 106 cells L−1 during the summer of 1981. The bloom was mainly restricted to the mid to inner region of this shallow cove with greatest concentrations localized in surface waters of the southwestern region during summer/fall periods of both years. Highly motile cells consisting of single, double and multiple cell zooids were found as chains of 4 and 8 cells restricted to the late August/September periods. The highest cell densities occurred during periods when annual temperatures were between 19 and 28 °C and salinities between 25 and 30. A major nutrient source for the cove was Crying Brook, located at the innermost region at the head of the cove. Inorganic nitrogen (NH3 and NO2 + NO3) from the brook was continually detectable throughout the study with maximum values of 57.5 and 82.5 μmol L−1, respectively. Phosphate (PO4-P) was always present in the source waters and rarely <0.5 μmol L−1; silicate always exceeded 30 μmol L−1 with maximum concentrations reaching 226 μmol L−1. Chlorophyll a and ATP concentrations during the blooms varied directly with cell densities. Maximum Chl a levels were 218 mg m−3 and ATP-carbon was >20 g C m−3. Primary production by the dinoflagellate-dominated community during the bloom varied between 4.3 and 0.07 g C m−3 d−1. Percent carbon turnover calculated from primary production values and ATP-carbon varied from 6 to 129% d−1. The dinoflagellates dominated the entire summer period; other flagellates and diatoms were present in lesser amounts. A combination of low washout rate due to the cove dynamics, active growth, and life cycles involving cysts allowed C. polykrikoides to maintain recurrent bloom populations in this area.  相似文献   

10.
Elevated (700 μmol mol−1) and ambient (350 μmol mol−1) CO2 effects on total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, photosynthesis (A), and photoinhibition during 6 d at low temperature were measured on wild type (WT), and rbcS antisense DNA mutants (T3) of tobacco (Nicotiana tabacum L.) with 60% of WT total Rubisco activity (Rodermel et al. (1988) Cell 55: 673–681). Prior to the low temperature treatment, A and quantum yield of PSII photochemistry in the light adapted state (φPSII) were significantly lower in T3 compared to WT at each CO2 level. At this time, total nonphotochemical quenching (NPQTotal) levels were near maximal (0.75–0.85) in T3 compared to WT (0.39–0.50). A was stimulated by 107% in T3 and 25% in WT at elevated compared to ambient CO2. Pre-treatment acclimation to elevated CO2 occurred in WT resulting in lower Rubisco activity per unit leaf area and reduced stimulation of A. At low temperature, A of WT was similar at elevated and ambient CO2 while stimulation of A by elevated CO2 in T3 was reduced. In addition, at low temperature we measured significantly lower photochemical quenching at elevated CO2 compared to ambient CO2 in both genotypes. NPQTotal was similar (0.80–0.85) among all treatments. However, a larger proportion of NPQTotal was composed of qI,d, the damage subcomponent of the more slowly relaxing NPQ component, qI, in both genotypes at elevated compared to ambient CO2. Greater qI,d, at elevated CO2 during and after the low temperature treatment was not related to pre-treatment differences in total Rubisco activity.  相似文献   

11.
The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2 •–) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2 •– levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2 •– levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2 •– levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.  相似文献   

12.
To quantitatively understand intracellular Na+ and Cl homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl channel (ICFTR) during the β1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of β1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl concentration and cell volume. These results are consistent with experimental data. Increasing the density of ICFTR shortened APD and augmented the peak amplitudes of the L-type Ca2+ current (ICaL) and the Ca2+ transient during the β1-adrenergic stimulation. This indirect inotropic effect was elucidated by the increase in the driving force of ICaL via a decrease in plateau potential. Our model reproduced the experimental data demonstrating the decrease in intracellular Na+ during the β-adrenergic stimulation at 0 or 0.5 Hz electrical stimulation. The decrease is attributable to the increase in Na+ affinity of Na+/K+ pump by protein kinase A. However it was predicted that Na+ increases at higher beating rate because of larger Na+ influx through forward Na+/Ca2+ exchange. It was demonstrated that dynamic changes in Na+ and Cl fluxes remarkably affect the inotropic action of isoproterenol in the ventricular myocytes.  相似文献   

13.
Li Yang  Gary J. Stephens   《Cell calcium》2009,46(4):248-256
Voltage-dependent Ca2+ channels (VDCCs) have emerged as targets to treat neuropathic pain; however, amongst VDCCs, the precise role of the CaV2.3 subtype in nociception remains unproven. Here, we investigate the effects of partial sciatic nerve ligation (PSNL) on Ca2+ currents in small/medium diameter dorsal root ganglia (DRG) neurones isolated from CaV2.3(−/−) knock-out and wild-type (WT) mice. DRG neurones from CaV2.3(−/−) mice had significantly reduced sensitivity to SNX-482 versus WT mice. DRGs from CaV2.3(−/−) mice also had increased sensitivity to the CaV2.2 VDCC blocker ω-conotoxin. In WT mice, PSNL caused a significant increase in ω-conotoxin-sensitivity and a reduction in SNX-482-sensitivity. In CaV2.3(−/−) mice, PSNL caused a significant reduction in ω-conotoxin-sensitivity and an increase in nifedipine sensitivity. PSNL-induced changes in Ca2+ current were not accompanied by effects on voltage-dependence of activation in either CaV2.3(−/−) or WT mice. These data suggest that CaV2.3 subunits contribute, but do not fully underlie, drug-resistant (R-type) Ca2+ current in these cells. In WT mice, PSNL caused adaptive changes in CaV2.2- and CaV2.3-mediated Ca2+ currents, supporting roles for these VDCCs in nociception during neuropathy. In CaV2.3(−/−) mice, PSNL-induced changes in CaV1 and CaV2.2 Ca2+ current, consistent with alternative adaptive mechanisms occurring in the absence of CaV2.3 subunits.  相似文献   

14.
The nitrogen uptake and growth capabilities of the potentially harmful, raphidophycean flagellate Heterosigma akashiwo (Hada) Sournia were examined in unialgal batch cultures (strain CCMP 1912). Growth rates as a function of three nitrogen substrates (ammonium, nitrate and urea) were determined at saturating and sub-saturating photosynthetic photon flux densities (PPFDs). At saturating PPFD (110 μE m−2 s−1), the growth rate of H. akashiwo was slightly greater for cells grown on NH4+ (0.89 d−1) compared to cells grown on NO3 or urea, which had identical growth rates (0.82 d−1). At sub-saturating PPFD (40 μE m−2 s−1), both urea- and NH4+-grown cells grew faster than NO3-grown cells (0.61, 0.57 and 0.46 d−1, respectively). The N uptake kinetic parameters were investigated using exponentially growing batch cultures of H. akashiwo and the 15N-tracer technique. Maximum specific uptake rates (Vmax) for unialgal cultures grown at 15 °C and saturating PPFD (110 μE m−2 s−1) were 28.0, 18.0 and 2.89 × 10−3 h−1 for NH4+, NO3 and urea, respectively. The traditional measure of nutrient affinity—the half saturation constants (Ks) were similar for NH4+ and NO3 (1.44 and 1.47 μg-at N L−1), but substantially lower for urea (0.42 μg-at N L−1). Whereas the α parameter (α = Vmax/Ks), which is considered a more robust indicator for substrate affinity when substrate concentrations are low (<Ks), were 19.4, 12.2 and 6.88 × 10−3 h−1/(μg-at N L−1) for NH4+, NO3 and urea, respectively. These laboratory results demonstrate that at both saturating and sub-saturating N concentrations, N uptake preference follows the order: NH4+ > NO3 > urea, and suggests that natural blooms of H. akashiwo may be initiated or maintained by any of the three nitrogen substrates examined.  相似文献   

15.
The voltage‐gated sodium channel subunit β4 (SCN4B) regulates neuronal activity by modulating channel gating and has been implicated in ethanol consumption in rodent models and human alcoholics. However, the functional role for Scn4b in ethanol‐mediated behaviors is unknown. We determined if genetic global knockout (KO) or targeted knockdown of Scn4b in the central nucleus of the amygdala (CeA) altered ethanol drinking or related behaviors. We used four different ethanol consumption procedures (continuous and intermittent two‐bottle choice (2BC), drinking‐in‐the dark and chronic intermittent ethanol vapor) and found that male and female Scn4b KO mice did not differ from their wild‐type (WT) littermates in ethanol consumption in any of the tests. Knockdown of Scn4b mRNA in the CeA also did not alter 2BC ethanol drinking. However, Scn4b KO mice showed longer duration of the loss of righting reflex induced by ethanol, gaboxadol, pentobarbital and ketamine. KO mice showed slower recovery to basal levels of handling‐induced convulsions after ethanol injection, which is consistent with the increased sedative effects observed in these mice. However, Scn4b KO mice did not differ in the severity of acute ethanol withdrawal. Acoustic startle responses, ethanol‐induced hypothermia and clearance of blood ethanol also did not differ between the genotypes. There were also no functional differences in the membrane properties or excitability of CeA neurons from Scn4b KO and WT mice. Although we found no evidence that Scn4b regulates ethanol consumption in mice, it was involved in the acute hypnotic effects of ethanol and other sedatives.  相似文献   

16.
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions.  相似文献   

17.
18.
Cultures of the obligate psychrophilic diatom Fragilariopsis cylindrus (Grunow) were grown for 4 months under steady-state conditions at −1 °C and +7 °C (50 μmol photons m−2 s−1) prior to measurements in order to investigate long-term acclimation of photosynthesis to both temperatures. No differences in maximum intrinsic quantum yield of PS II (FV/FM) and relative electron transport rates could be detected at either temperature after 4 months of acclimation. Measurements of photosynthesis (relative electron transport rates) vs. irradiance (P vs. E curves) revealed similar values for relative light utilization efficiency (α = 0.57 at −1 °C, α = 0.60 at +7 °C) but higher values for irradiance levels at which photosynthesis saturates (EK) at −1 °C and, therefore, higher maximum photosynthesis (PMAX = 54 (relative units) at −1 °C, PMAX = 49 at +7 °C). Nonphotochemical quenching (NPQ) measurements at 385 μmol photons m−2 s−1 indicated higher (37%) NPQ for diatoms grown at −1 °C compared to +7 °C, which was possibly related to a 2-fold increase in the concentration of the pigment diatoxanthin and a 9-fold up-regulation of a gene encoding a fucoxanthin chlorophyll a,c-binding protein. Expression of the D1 protein encoding gene psbA was ca. 1.5-fold up-regulated at −1 °C, whereas expression levels of other genes from Photosystem II (psbC, psbU, psbO), as well as rbcL, the gene encoding the Rubisco large subunit were similar at both temperatures. However, a 2-fold up-regulation of a plastid glyceraldehyde-P dehydrogenase at −1 °C indicated enhanced Calvin cycle activity. This study revealed for the first time that a polar diatom could efficiently acclimate photosynthesis over a wide range of polar temperatures given enough time. Acclimation of photosynthesis at −1 °C was probably regulated similarly to high light acclimation.  相似文献   

19.
Mutations in the voltage‐gated sodium channel gene SCN8A cause a broad range of human diseases, including epilepsy, intellectual disability, and ataxia. Here we describe three mouse lines on the C57BL/6J background with novel, overlapping mutations in the Scn8a DIIS4 voltage sensor: an in‐frame 9 bp deletion (Δ9), an in‐frame 3 bp insertion (?3) and a 35 bp deletion that results in a frameshift and the generation of a null allele (Δ35). Scn8a Δ9/+ and Scn8a ?3/+ heterozygous mutants display subtle motor deficits, reduced acoustic startle response, and are resistant to induced seizures, suggesting that these mutations reduce activity of the Scn8a channel protein, Nav1.6. Heterozygous Scn8a Δ35/+ mutants show no alterations in motor function or acoustic startle response, but are resistant to induced seizures. Homozygous mutants from each line exhibit premature lethality and severe motor impairments, ranging from uncoordinated gait with tremor (Δ9 and ?3) to loss of hindlimb control (Δ35). Scn8a Δ9/Δ9 and Scn8a ?3/?3 homozygous mutants also exhibit impaired nerve conduction velocity, while normal nerve conduction was observed in Scn8a Δ35/Δ35 homozygous mice. Our results suggest that hypomorphic mutations that reduce Nav1.6 activity will likely result in different clinical phenotypes compared to null alleles. These three mouse lines represent a valuable opportunity to examine the phenotypic impacts of hypomorphic and null Scn8a mutations without the confound of strain‐specific differences.  相似文献   

20.
The seasonal variability of specific growth rate and the carbon stable isotope ratio (δ13C) of leaf blades (δ13Cleaf) of a temperate seagrass, Zostera marina (within 10 days old) were measured simultaneously, together with the δ13C of dissolved inorganic carbon (δ13CDIC) at three sites in the semi-closed Akkeshi estuary system, northeastern Japan, in June, September, and November 2004. The δ13Cleaf ranged from −16.2 to −6.3‰ and decreased from summer to winter. The simultaneous measurement of the δ13Cleaf, growth rate, and morphological parameters (mean leaf length and width, mean number of leaves per shoot, and sheath length) of the seagrass and δ13CDIC in the surrounding water allowed us to compare directly the δ13Cleaf and specific growth rate of seagrass. The difference in the δ13C of seagrass leaves relative to the source DIC (Δδ13Cleaf − DIC) was the least negative (−11 to −7‰) in June at all three sites and became more negative (−17 to −8‰) as the specific growth rate decreased. This positive correlation between Δδ13Cleaf − DIC and specific growth rate can be used to diagnose the growth of seagrasses. Δδ13Cleaf − DIC changed by −1.7 ± 0.2‰ when the leaf specific growth rate decreased by 1% d−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号