首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of parasite-specific T helper cells was examined in mice infected with Trypanosoma cruzi. At various times during the course of infection mice were challenged with TNP conjugated to fixed culture forms of T. cruzi (TNP-TC), and the resultant splenic plaque-forming cells (PFC) against TNP were determined. By day 10 post-infection significant responses against TNP-TC were observed but not against TNP-BSA. Infected mice that were not challenged with TNP-TC did not produce anti-TNP PFC, which demonstrated that the TNP-TC response was not the result of nonspecific B cell activation. Treatment of spleen cells from infected mice with anti-theta antiserum plus C ablated the anti-TNP-TC response when these cells were transferred to normal mice that were subsequently challenged with TNP-TC, whereas treatment of the cells with anti-Ig plus C prior to transfer had no effect on the TNP-TC response. These results demonstrate enhancement of parasite-specific Th activity of mice infected with T. cruzi and that cell-cell interaction in development of responses to neoantigens is fully functional when sensitized Th are present, even though the animals are unresponsive to heterologous antigens.  相似文献   

2.
Tetracyclines have been used in the treatment of chronic inflammatory diseases associated with local infiltration of inflammatory cells and matrix destruction as observed in rheumatoid arthritis and periodontal disease. Fas/Fas ligand (FasL)-mediated apoptosis plays an important role in maintaining T lymphocyte homeostasis and modulating immune response. The present study demonstrates that doxycycline inhibits Jurkat T lymphocyte proliferation and induces apoptosis. The phytohemagglutinin (PHA)-activated Jurkat cells are more susceptible to doxycycline-induced apoptosis. Furthermore, doxycycline-induced apoptosis is associated with increased Fas/FasL expression in Jurkat cells. The increase of apoptosis in Jurkat cells treated with doxycycline is consistent with the increase of FasL expression. These results suggest that doxycycline may downregulate the inflammatory process in certain diseases by eliminating activated T lymphocytes through Fas/FasL-mediated apoptosis.  相似文献   

3.
The Biozzi "high" (BH) and "low" (BL) responder mice (Selection III) differed in their susceptibility to Trypanosoma cruzi. The BH strain responded quickly to the infection, similar to the reaction of (CBA X C57B1/10)F1 mice but in contrast to the susceptible BL strain. We suggest that the IgG response mounted by the host during the prepatent period of the infection is crucial to the outcome of the infection.  相似文献   

4.
Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.  相似文献   

5.
Polyclonal B lymphocyte activation during Trypanosoma cruzi infection   总被引:8,自引:0,他引:8  
Infection of A/J mice with Trypanosoma cruzi results in the polyclonal activation of B lymphocytes in vivo as assessed by the spontaneous plaque-forming cell (PFC) response to trinitrophenyl and to goat, equine, and sheep erythrocytes. The peak response to these antigens is found at 5 to 6 days of infection. Additionally, a polyclonal response to syngeneic erythrocytes can be detected in infected mice by using aged but not fresh indicator cells. Polyclonally stimulated PFC to human gamma-PFC found late in infection during a period of marked splenomegaly and parasitemia. This trypanosoma-induced polyclonal B cell activation may well be responsible for the abnormalities in immunoglobulin synthesis and secretion that have been reported to occur during human infection with T. cruzi.  相似文献   

6.
In the acute phase of Trypanosoma cruzi infection there is a prominent thymus atrophy, which is determined by massive loss of immature CD4/CD8 double positive cells. Recently, the involvement of a parasite transialidase, which is shed from the parasite cell membrane and the activation of P2X(7), a purinergic receptor, were stated as important pathways leading to thymus atrophy. In this work we evaluated the possible involvement of Fas- and perforin-based cytotoxic pathways in the thymus atrophy induced by T. cruzi infection using gld/gld and perforin (-/-) mice. We found similar kinetics of thymus atrophy in mice competent or deficient in both cytotoxic pathways, indicating that both molecules are not directly involved in the thymus atrophy, either inducing cellular death or as co-stimulatory molecules.  相似文献   

7.
Trypanosoma cruzi infection is a major public health problem in Latin America. The host innate immune system plays a pivotal role in the recognition of T. cruzi infection and the subsequent development of adaptive immunity. In this review, we focus on the TLR-dependent and -independent innate immune responses to T. cruzi.  相似文献   

8.
9.
Inbred strains of mice inoculated with the T cruzi Y strain behaved as susceptible (A/J, C3H/HeN), intermediate (BALB/c) or relatively resistant (C57BL/6) with respect to the magnitude of parasitaemia and mortality rate. C57BL/10 mice were susceptible in relation to parasitaemia but resistant when mortality was analyzed. Infection with T cruzi CL strain presented the same results, except for C57BL/6 which behaved as susceptible mice. Athymic mice of various backgrounds revealed no differences in susceptibility, presenting the same dramatic parasitaemia, tissue colonization pattern and no inflammatory reaction in any of the tissues studied. Infection of euthymic and athymic BALB/c mice elicited the production of parasite-specific antibodies, which reached similar levels on the first 9 days but differed after day 13. Serum transfer experiments in BALB/c mice did not show great differences in parasitaemia but altered T. cruzi polymorphism reducing the slender forms in athymic mice. Histopathology of athymic BALB/c mice showed the same tissue tropism when infected either with T cruzi Y or CL strain.  相似文献   

10.
Mice infected with 5 x 10(3) forms of Trypanosoma cruzi showed a transient, but severe impairment of in vitro spleen cell responses to parasite antigens and to Concanavalin A (Con A). In contrast, inguinal and periaortic lymph node (LN) cells displayed high parasite-specific proliferative responses and only a partial reduction of the Con A-induced proliferation during the acute and chronic phases of infection. Lymphocytes that underwent blastic transformation in T. cruzi-stimulated cell cultures were of the L3T4+ phenotype. Suppression of spleen cell responses occurred in the acute phase whether mice were infected with high (3 x 10(5] or low (5 x 10(3] doses of T. cruzi by intraperitoneal or subcutaneous route. Suppression of the T. cruzi-specific proliferative response of LN cells was only observed in mice infected with high subcutaneous inocula. This suppression, however, was restricted to the LNs draining the site of inoculation without affecting distant LNs. Supernatants from parasite-stimulated proliferating LN cells displayed low or undetectable T cell growth factor (TCGF) activity, in contrast with the high TCGF levels found in supernatants of the same cells stimulated with Con A. Low levels of TCGF were also detected in cultures of LN cells from mice immunized with T. cruzi extracts. Neither the T. cruzi antigen used for in vitro stimulation nor the LN cell supernatants from infected mice inhibited TCGF activity. These findings indicate that (1) parasite-specific responses are present in the LN compartment throughout the acute phase of T. cruzi infection in mice and (2) the proliferative response of L3T4+ LN cells from infected mice to T. cruzi antigens is not associated with a high TCGF secretory response.  相似文献   

11.
12.
CD8(+) T cell responses to persistent infections caused by intracellular pathogens are dominated by resting T effectors and T effector memory cells, with little evidence suggesting that a T central memory (T(CM)) population is generated. Using a model of Trypanosoma cruzi infection, we demonstrate that in contrast to the T effector/T effector memory phenotype of the majority of T. cruzi-specific CD8(+) T cells, a population of cells displaying hallmark characteristics of T(CM) cells is also present during long-term persistent infection. This population expressed the T(CM) marker CD127 and a subset expressed one or more of three other T(CM) markers: CD62L, CCR7, and CD122. Additionally, the majority of CD127(high) cells were KLRG1(low), indicating that they have not been repetitively activated through TCR stimulation. These CD127(high) cells were better maintained than their CD127(low) counterparts following transfer into naive mice, consistent with their observed surface expression of CD127 and CD122, which confer the ability to self-renew in response to IL-7 and IL-15. CD127(high) cells were capable of IFN-gamma production upon peptide restimulation and expanded in response to challenge infection, indicating that these cells are functionally responsive upon Ag re-encounter. These results are in contrast to what is typically observed during many persistent infections and indicate that a stable population of parasite-specific CD8(+) T cells capable of Ag-independent survival is maintained in mice despite the presence of persistent Ag.  相似文献   

13.
The outcome of Trypanosoma cruzi infection in inbred strains of mice is under genetic control. The lymphocyte responses to T-cell mitogens and their regulation were investigated in strains of mice resistant or susceptible to T. cruzi. Six to eight days after the inoculation of T. cruzi, resistant and susceptible mice had depressed responses to T-cell mitogens. In resistant B6 mice, suppression was maximal 18 days after infection and it persisted for at least 320 days. The duration of immunosuppression correlated with the persistence of a subpatent parasitemia. In cell mixing experiments, it was determined that the concanavalin A (Con A) responses in the resistant B6 and B6C3F1 mouse strains were suppressed by highly active T-suppressor cells. In the susceptible C3H mice, intense suppression of the Con A responses was detected 14 days after inoculation of T. cruzi. Nevertheless, only weak suppressor cell activity was detected in the infected C3H mice, and suppression was not abrogated by passage through a nylon wool column nor by treatment with antitheta antibodies and complement. Thus, it was suggested that, during the course of infection with T. cruzi, splenic T cells from C3H mice acquired a block in the metabolic pathway for cellular activation by Con A. The influences of T. cruzi epimastigotes on the Con A responses of spleen cells from uninfected mice were then studied. The Con A responses of spleen cells from C3H mice were depressed in the presence of epimastigotes, whereas they were either unaffected or enhanced in spleen cells from B6 mice. Hence, the immunoregulatory events provoked by T. cruzi infection differed in genetically resistant and susceptible mice, and lymphocytes from C3H mice were predisposed to a parasite-induced block in the responses to Con A. Thus, the gene(s) determining the outcome of infection with T. cruzi may be phenotypically expressed through an influence on immunoregulatory events.  相似文献   

14.
Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/−, Bim−/− mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim−/− mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/− mice. At the peak of parasitemia, peritoneal macrophages of Bim−/− mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim−/− splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim−/− mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim−/− mice and place Bim as an important protein in the control of T. cruzi infections.Subject terms: Cell death and immune response, Infectious diseases  相似文献   

15.

Background

Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy.

Methods and Findings

We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child''s risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child''s house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children.

Conclusions

We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings.  相似文献   

16.
Human humoral immunity to hsp70 during Trypanosoma cruzi infection   总被引:4,自引:0,他引:4  
Immunologic screening of cDNA expression libraries has been widely used for the identification of DNA sequences encoding the immunologically relevant proteins of many pathogenic microorganisms. For reasons that are not entirely clear, sequences encoding 70-kDa heat shock and related proteins (hsp70), which are among the most highly conserved proteins known, have routinely been identified by this approach. Consequently, hsp70 proteins have been proposed to be involved in the autoimmune processes thought responsible for the pathogenesis of the diseases caused by some of these organisms, e.g., chronic Trypanosoma cruzi infection (Chagas' disease). Therefore, we investigated whether hsp70 might be a specific target of the human humoral immune response to T. cruzi infection, and, if so, whether humoral autoimmunity to hsp70 might play a role in pathogenesis. We found that hsp70 is indeed a major polypeptide Ag in Chagas' disease, but that the antibodies to T. cruzi hsp70 do not react with human hsp70--even though the proteins display 73% amino acid sequence identify. These results indicate that self-tolerance to hsp70 is maintained during chronic T. cruzi infection and strongly argue against a role for humoral autoimmunity to hsp70 in the pathogenesis of Chagas' disease.  相似文献   

17.
The specific antibody responses were compared among susceptible (A/Sn), moderately susceptible (Balb/c) and resistant (C57 BL/10J) mice infected with Trypanosoma cruzi (Y strain). Sera obtained during the second week of infection recognized a surface trypomastigote antigen of apparent Mr 80 kDa while displaying complex reactivity to surface epimastigote antigens. Complex trypomastigote antigens recognition was detected around the middle of the third week of infection. No major differences were observed along the infection, among the three strains of mice, neither in the patterns of surface antigen recognition by sera, nor in the titres of antibodies against blood trypomastigotes (lytic antibodies), tissue culture trypomastigotes or epimastigotes. On immunoblot analysis, however, IgG of the resistant strain displayed the most complex array of specificities against both trypo and epimastigote antigens, followed by the susceptible strain. IgM antibodies exhibited a more restricted antigen reactivity, in the three mouse strains studied. Balb/c sera (IgG and IgM) showed the least complex patterns of reactivity to antigens in the range of 30 kDa to 80 kDa. The onset of reactivity in the serum to trypomastigote surface antigens was also dependent on the parasite load to which the experimental animal was subjected.  相似文献   

18.
We examined the inductive signals necessary to render B lymphocytes capable of supporting a productive vesicular stomatitis virus infection. Small murine splenic B cells in the G0 phase of the cell cycle were cultured with stimulators which allow progression through various stages in the activation and/or differentiation pathway leading to antibody secretion. We found that vesicular stomatitis virus expression is dependent on the state of B-cell activation and that three distinct phases can be defined. A nonsupportive state, which is defined by the failure to produce infection centers, viral proteins, or PFUs, is characteristic of freshly isolated small B cells, B cells cultured 48 h without further stimulation, or B cells in the G1 phase of the cell cycle induced by culture with T-cell-derived lymphokines. This refractory state was not due to a failure of virus uptake. Activation of G0 B cells with anti-immunoglobulin at doses which allow entry into the S phase rendered them capable of synthesizing viral proteins and increased the number of B cells producing infection centers, without enhancing PFU production on a per cell basis. In contrast, B cells stimulated with multiple inductive signals provided by anti-immunoglobulin and lymphokines showed increased infectious particle production (7 PFU per infection center). Lipopolysaccharide stimulation, acting through another induction pathway, caused the maximum increase in the number of infected B cells and production of infectious particles (25 PFU per infection center).  相似文献   

19.
20.
Aminoguanidine (AG), a nitric oxide synthase (NOS) inhibitor, has been widely used to study the role of inducible NOS (iNOS) in host defense against infections caused by various pathogens including Salmonella typhimurium. iNOS has been reported to play an important role in host defense against S. typhimurium infection both in vitro and in vivo. In this report we show those AG treatment lead to weight loss in both wild-type and iNOS knockout mice, and rendered them more susceptible to Salmonella infection. These results suggest that AG may have side effects other than the inhibition of iNOS, and that data obtained from studies using AG should be interpreted with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号