共查询到20条相似文献,搜索用时 0 毫秒
1.
Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. 总被引:31,自引:2,他引:31 下载免费PDF全文
A J O''''Sullivan T R Cheek R B Moreton M J Berridge R D Burgoyne 《The EMBO journal》1989,8(2):401-411
Temporal and spatial changes in the concentration of cytosolic free calcium ([Ca2+]i) in response to a variety of secretagogues have been examined in adrenal chromaffin cells using digital video imaging of fura-2-loaded cells. Depolarization of the cells with high K+ or challenge with nicotine resulted in a rapid and transient elevation of [Ca2+]i beneath the plasma membrane consistent with Ca2+ entry through channels. This was followed by a late phase in which [Ca2+]i rose within the cell interior. Agonists that act through mobilization of inositol phosphates produced an elevation in [Ca2+]i that was most marked in an internal region of the cell presumed to be the site of IP3-sensitive stores. When the same cells were challenged with nicotine or high K+, to trigger Ca2+ entry through voltage-dependent channels, the rise in [Ca2+]i was most prominent in the same localized region of the cells. These results suggest that Ca2+ entry through voltage-dependent channels results in release of Ca2+ from internal stores and that the bulk of the measured rise in [Ca2+]i is not close to the exocytotic sites on the plasma membrane. Analysis of the time courses of changes in [Ca2+]i in response to bradykinin, angiotensin II and muscarinic agonists showed that these agonists produced highly heterogeneous responses in the cell population. This heterogeneity was most marked with muscarinic agonists which in some cells elicited oscillatory changes in [Ca2+]i. Such heterogeneous changes in [Ca2+]i were relatively ineffective in eliciting catecholamine secretion from chromaffin cells. A single large Ca2+ transient, with a component of the rise in [Ca2+]i occurring beneath the plasma membrane, may be the most potent signal for secretion. 相似文献
2.
The effects of endothelin on intracellular calcium concentrations ([Ca2+i]) in primary cultures of bovine adrenal chromaffin cells (BAM) were measured using Fura 2. Endothelin had minimal effects on [Ca2+i] over a broad dose range (1 nM to 1 microM). However, in conjunction with K+ depolarization there was a synergistic increase in [Ca2+i]. This effect was dependent on extracellular calcium as was the response to KCl alone. A partial synergistic effect was evident with endothelin and nicotinic stimulation. The effects of endothelin and angiotensin II on [Ca2+i] are only additive. Blockade of voltage sensitive calcium channels failed to alter the synergistic effects. Our results indicate that endothelin influences BAM calcium mobilization through sites regulated by membrane depolarization but differing from traditional voltage sensitive calcium channels. 相似文献
3.
The relationship between secretion and intracellular free calcium in bovine adrenal chromaffin cells 总被引:5,自引:0,他引:5
Robert D. Burgoyne 《Bioscience reports》1984,4(7):605-611
The effect of carbamylcholine and the calcium ionophore A23187 on catecholamine release and intracellular free calcium, [Ca2+]i, in bovine adrenal chromaffin cells was determined. At 10–4M carbamylcholine maximal release occurred with an accompanying increase i n [Ca2+]i from a basal level of 168 nM to less than 300 nM. An increase in [Ca2+]i of a similar magnitude was found following challenge with 40 nM A23187. However, in this case, no catecholamine release occurred. These results suggest that stimulation of secretion from chromaffin cells by carbamylcholine may involve additional triggers which stimulate secretion at low [Ca2+]i. 相似文献
4.
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
In this study, the relationship between intracellular calcium stores and depolarization-evoked stimulation was examined in bovine chromaffin cells, using changes in membrane capacitance to monitor both exocytosis and endocytosis. Cells were voltage-clamped using the perforated whole-cell patch configuration to minimize alterations in intracellular constituents. Control cells exhibited reproducible secretory responses each time the cell was stimulated. However, the same stimulation protocol elicited progressively smaller secretory responses in cells where their intracellular calcium store was emptied by thapsigargin. Transient elevation of the intracellular calcium concentration with a brief histamine treatment enhanced subsequent secretory responses in control but not in thapsigargin-treated cells. A series of depolarizations to -20 mV, which allowed small amounts of Ca(2+) influx but which by itself did not trigger catecholamine secretion, enhanced subsequent exocytosis in both control and thapsigargin-treated cells. Caffeine-pretreated cells exhibited a rundown in the secretory response that was similar to that produced by thapsigargin. These results suggest that brief elevations of [Ca(2+)](i) could enhance subsequent secretory responses. In addition, the data suggest that intracellular calcium stores are vital for the maintenance of exocytosis during repetitive stimulation. 相似文献
6.
The possible role of metalloendoproteinase in stimulus-secretion coupling in adrenal chromaffin cells was examined using the metalloendoproteinase inhibitors 1,10-phenanthroline and carbobenzoxy-Gly-Phe-NH2. Catecholamine release elicited by nicotine or by depolarisation with 55 mM K+ was almost completely abolished by 0.5 mM 1,10-phenanthroline. Carbobenzoxy-Gly-Phe-NH2 (2.5 mM) inhibited catecholamine release in response to nicotine but enhanced that due to 55 mM K+. The rise in intracellular free calcium, [Ca2+]i, in response to either nicotine or 55 mM was inhibited by about 50% by both inhibitors. One site of action of metalloendoproteinase inhibitors may, therefore, be at the level of the regulation of [Ca2+]i. Catecholamine release and the rise in [Ca2+]i elicited by the calcium ionophore ionomycin were not reduced by the inhibitors. These results show that metalloendoproteinase inhibitors have complex effects on chromaffin cells including effects on the regulation of [Ca2+]i but do not inhibit calcium-activated exocytosis itself. 相似文献
7.
GABAA receptor-mediated increase of cytosolic Ca2+ in isolated bovine adrenal chromaffin cells 总被引:1,自引:0,他引:1
We have studied the effects of GABA on cytosolic free Ca2+ concentration ([Ca2+]i) as a means of investigating the role of GABA in adrenal catecholamine (CA) secretion. It was demonstrated that GABA caused an elevation of [Ca2+]i via the GABAA receptor in a concentration-dependent manner, which was well correlated with an increase of 45Ca uptake, an increase of CA release and a depolarization of chromaffin cells assessed with bis-oxonol fluorescence. Since the GABA-induced rise of [Ca2+]i was absolutely dependent on the presence of extracellular Ca2+ and partly sensitive to nifedipine, at least one entry route for Ca2+ facilitated by GABA via a voltage-sensitive Ca2+ channel was suggested. When extracellular Cl- was lowered, GABA-induced CA release, depolarization, and rise of [Ca2+]i were all markedly enhanced. It is possible that GABA plays a modulatory role in the regulation of adrenal CA secretion as a facilitatory modulator. 相似文献
8.
Dehydroepiandrosterone (DHEA) is a putative anti-stress agent and stress is associated with the secretion of catecholamine from the adrenal gland, but the effects of DHEA on catecholamine secretion are not fully understood. Using bovine chromaffin cells, we found that DHEA inhibited catecholamine secretion and cytosolic Ca2+ ([Ca2+]i) rise coupled with nicotinic acetylcholine receptor (nAChR) without exerting an effect on3H-nicotine binding. In the case of high K+ stimulation, DHEA effectively suppressed secretion without affecting [Ca2+]1 rise. Trifluoperazine (TFP), a calmodulin inhibitor, was capable of counteracting the inhibition of DHEA on high K+-induced secretions. In permeabilized cells, DHEA suppressed the Ca2+-induced secretion. These results suggest that DHEA (a) acts as a channel blocker that suppresses Ca2+ influx and subsequent secretions associated with nAChR, or (b) affects the intracellular secretion machinery to suppress high K+-induced secretions without affecting the high K+-induced [Ca2+]i rise. 相似文献
9.
Standard (UICC) chrysotile B asbestos fibres caused rapid (within minutes) 5-to-8-fold stimulations of catecholamine secretion from isolated bovine adrenal chromaffin cells without affecting their viability (97%). The stimulation of catecholamine secretion by asbestos was selective to chrysotile type fibres, half-maximal stimulation by standard chrysotile B, chrysotile A, crocidolite, amosite and silica fibres being observed at 7, 73, 160, 250 and ? 500 μg per ml, respectively. The secretory effect of chrysotile B was additive to that of acetylcholine and blocked by either the divalent cations, Co2+, Ni2+ and Mg2+ or the ion chelators, EGTA and EDTA. Conversely, neither verapamil, methoxyverapamil, or removal of extracellular calcium affected the asbestos-evoked catecholamine secretion. These data indicate that the selective stimulatory effect of chrysotile type asbestos on adrenal chromaffin cells can be mediated by membrane or intracellular calcium and raise the question of the possible involvement of catecholamines in the pathogenesis of asbestos related diseases. 相似文献
10.
Agonist-dependent patterns of cytosolic Ca2+ changes in single bovine adrenal chromaffin cells: relationship to catecholamine release. 下载免费PDF全文
The patterns of agonist-induced elevations of cytosolic free Ca2+ ([Ca2+]i) were characterized and compared by the use of single adrenal chromaffin cells. Initial histamine- or angiotensin II (AII)-induced elevations of [Ca2+]i were equal in magnitude (peaks 329 +/- 20 [SE] and 338 +/- 46 nM, respectively). These initial increases of [Ca2+]i were transient, insensitive to either Gd3+ or removing external Ca2+, and were primarily the result of Ca2+ release from intracellular stores. After the initial peak(s) of [Ca2+]i, a second phase of moderately elevated [Ca2+]i was observed, and this response was sensitive to either Gd3+ or removing external Ca2+, supporting a role for Ca2+ entry. In most cases, the second phase of elevated [Ca2+]i was sustained during histamine stimulation but transient during AII stimulation. Maintenance of the second phase was a property of the agonist rather than of the particular cell being stimulated. Thus, individual cells exposed sequentially to histamine and AII displayed distinct patterns of [Ca2+]i changes to each agonist, regardless of the order of addition. Histamine also stimulated twice as much [3H]catecholamine release as AII, and release was completely dependent on external Ca2+. Therefore, the ability of histamine and AII to sustain (or promote) Ca2+ entry appears to underlie their efficacy as secretagogues. These data provide evidence linking agonist-dependent patterns of [Ca2+]i changes in single cells with agonist-dependent functional responses. 相似文献
11.
Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells 总被引:16,自引:0,他引:16
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+. 相似文献
12.
Fura-2 was used to monitor Pb2+ entry into isolated bovine chromaffin cells exposed to micromolar concentrations of Pb2+ in media containing basal or high concentrations of K+. The entry of Pb2+ consists of voltage-independent and voltage-dependent (K(+)-stimulated) components. The voltage-dependent Pb2+ entry is enhanced by Ca2+ channel agonist BAY K 8644 and blocked by the channel antagonist nifedipine, suggesting the involvement of the L-type Ca2+ channels. In contrast to the transient, K(+)-depolarization-dependent increase in [Ca2+]i, the increase in [Pb2+]i is sustained over a period of several minutes, suggesting the absence of channel inactivation and/or the saturation of Pb(2+)-buffering capacity of the cell cytosol. 相似文献
13.
Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes 总被引:17,自引:0,他引:17
Changes of cytosolic free Ca2+ [( Ca2+]i) in response to receptor activation were studied at the single cell level by using digital imaging fluorescence microscopy of fura-2-loaded primary cultured hepatocytes. In response to phenylephrine and vasopressin, individual hepatocytes displayed dose-dependent oscillations of [Ca2+]i similar to those observed in aequorin-injected hepatocytes by Woods et al. (Woods, N. M., Cuthbertson, K. S. R., and Cobbold, P. H. (1986) Nature 329, 719-721). With increasing agonist concentration, the frequency of oscillations increased and the latent period decreased. For a given cell, peak [Ca2+]i was independent of applied agonist concentration. However, there was considerable variation from cell to cell in the absolute value of peak [Ca2+]i. There was also marked intercellular heterogeneity in the latency, frequency, and overall pattern of the Ca2+ responses. Such asynchronous responses can be explained in part by the apparent differential agonist sensitivity of individual cells for latency and frequency. At high doses, phenylephrine maintained an oscillatory pattern, whereas vasopressin produced a complex mixture of spiking and sustained [Ca2+]i responses. Vasopressin and phenylephrine also displayed differently shaped [Ca2+]i oscillations at submaximal doses, due primarily to a slower rate of decay with vasopressin. Despite the large cell-cell variation in the patterns of [Ca2+]i oscillations, successive readditions of the same agonist elicited identical cell-specific patterns of oscillation. In the absence of extracellular Ca2+ the frequency but not the magnitude of [Ca2+]i oscillations was decreased. Buffering of [Ca2+]i by increasing the fura-2 load of single hepatocytes also decreased the frequency of oscillations without affecting the peak Ca2+ level. These data provide further support for the importance of frequency modulation in agonist-induced Ca2+ responses and suggest that Ca2+ itself plays an important role in regulating the frequency of [Ca2+]i oscillations. Furthermore, the data demonstrate a broad heterogeneity in hepatocyte [Ca2+]i oscillations which may underlie the nonoscillatory responses of cell populations. 相似文献
14.
Synthetic oligopeptide inhibitors of metalloendoprotease activity were found to inhibit catecholamine release from intact bovine adrenal chromaffin cells. The efficiency of these compounds in blocking secretion was dependent on the type and dose of the secretagogues employed. By contrast, catecholamine release from digitonin-permeabilized cells stimulated with micromolar calcium was virtually not affected. Using a different model system mimicking protein-mediated membrane fusion during exocytosis (Bental, M., Lelkes, P.I., Scholma, J., Hoekstra, D., and Wilschut, J. (1984) Biochim. Biophys. Acta 774, 296-300) we found that exposure of chromaffin granules to a genuine metalloendoprotease, thermolysin, impaired their fusion competence with liposomes. The same oligopeptide inhibitors of metalloendoprotease activity that interfered with secretion from the intact cells were also found to cause an increase in 45Ca2+ efflux concomitant with a slight elevation of the free intracellular calcium concentration [( Ca2+]i) to levels not sufficient to elicit secretion. Subsequent stimulation of the cells in the presence of the potent inhibitors resulted in a reduced increase in the cytosolic calcium concentration, as compared to nontreated control cells. The reduction in the secretagogue-evoked rise in [Ca2+]i was also dependent on the time of pretreatment of the cells with the metalloendoprotease inhibitors. Consistently, none of these effects were seen with structurally similar oligopeptides that are not metalloendoprotease substrates/inhibitors. We conclude that potent inhibitors of metalloendoprotease activity and hence, presumably, the enzymes per se modulate stimulus-secretion coupling by interfering with calcium homeostasis rather than directly with membrane fusion. 相似文献
15.
16.
Temperature sensitivity of catecholamine secretion and ion fluxes in bovine adrenal chromaffin cells
The effects of temperature on ion fluxes and catecholamine secretion that are mediated by nicotinic acetylcholine receptors (nAChRs), voltage-sensitive calcium channels (VSCCs), and voltage-sensitive sodium channels (VSSCs) were investigated using bovine adrenal chromaffin cells. When the chromaffin cells were stimulated with DMPP, a nicotinic cholinergic agonist, or 50 mM K+, the intracellular calcium ([Ca2+]i) elevation reached a peak and decreased more slowly at lower temperatures. The DMPP-induced responses were more sensitive to temperature changes compared to high K+-induced ones. In the measurement of intracellular sodium concentrations ([Na+]i), it was found that nicotinic stimulation required a longer time to attain the maximal level of [Na+]i at lower temperatures. In addition, the VSSCs-mediated [Na+]i increase evoked by veratridine was also reduced as the temperature decreased. The measurement of [3H]norepinephrine (NE) secretion showed that the secretion within the first 3 min evoked by DMPP or high K+ was greatest at 37 degrees C. However, at 25 degrees C, the secretion evoked by DMPP, but not that by the 50 mM K+, was greater after 10 min of stimulation. This data suggest that temperature differentially affects the activity of nAChRs, VSCCs, and VSSCs, resulting in differential [Na+]i and [Ca2+]i elevation, and in the [3H]NE secretion by adrenal chromaffin cells. 相似文献
17.
L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion 总被引:3,自引:1,他引:3
Marcantoni A Baldelli P Hernandez-Guijo JM Comunanza V Carabelli V Carbone E 《Cell calcium》2007,42(4-5):397-408
Voltage-gated L-type (Cav1.2 and Cav1.3) channels are widely expressed in cardiovascular tissues and represent the critical drug-target for the treatment of several cardiovascular diseases. The two isoforms are also abundantly expressed in neuronal and neuroendocrine tissues. In the brain, Cav1.2 and Cav1.3 channels control synaptic plasticity, somatic activity, neuronal differentiation and brain aging. In neuroendocrine cells, they are involved in the genesis of action potential generation, bursting activity and hormone secretion. Recent studies have shown that Cav1.2 and Cav1.3 are also expressed in chromaffin cells but their functional role has not yet been identified despite that L-type channels possess interesting characteristics, which confer them an important role in the control of catecholamine secretion during action potentials stimulation. In intact rat adrenal glands L-type channels are responsible for adrenaline and noradrenaline release following splanchnic nerve stimulation or nicotinic receptor activation. L-type channels can be either up- or down-modulated by membrane autoreceptors following distinct second messenger pathways. L-type channels are tightly coupled to BK channels and activate at relatively low-voltages. In this way they contribute to the action potential hyperpolarization and to the pace-maker current controlling action potential firings. L-type channels are shown also to regulate the fast secretion of the immediate readily releasable pool of vesicles with the same Ca(2+)-efficiency of other voltage-gated Ca(2+) channels. In mouse adrenal slices, repeated action potential-like stimulations drive L-type channels to a state of enhanced stimulus-secretion efficiency regulated by beta-adrenergic receptors. Here we will review all these novel findings and discuss the possible implication for a specific role of L-type channels in the control of chromaffin cells activity. 相似文献
18.
In order to analyze the factors regulating agonist-stimulated Ca2+ mobilization, cytosolic free [Ca2+] ([Ca2+]i) was measured directly in fura-2-loaded rat parotid acinar cells. Stimulation of muscarinic receptors by carbachol produced a dose-dependent rise in [Ca2+]i. In the presence of external Ca2+, the initial transient rise was followed by a maintained elevation. The maintained elevation is dependent on the presence of external Ca2+. Removal of Ca2+ by addition of EGTA caused a rapid decline in [Ca2+]i back to base line. In the absence of external Ca2+, only an initial transient peak in [Ca2+]i was seen which then declined to base line; the maintained elevation in [Ca2+]i could then be evoked by addition of Ca2+ in the continued presence of carbachol. Muscarinic receptor occupation by carbachol is required to maintain the elevated level of [Ca2+]i; addition of the muscarinic antagonist, atropine, caused [Ca2+]i to decline back to the basal level. The maintained elevation in [Ca2+]i, but not the initial transient peak, can also be blocked by Ni2+ but was unaffected by the organic Ca2+ antagonists. Total substitution of external Na+ with the impermeant cation, N-methyl-D-glucamine, had no effect on either the initial or the maintained response to carbachol; however, total substitution of Na+ with K+ attenuated the maintained response while not affecting the initial peak. Refilling of the intracellular Ca2+ store was also studied and found to take place in the absence of agonist and with no substantial elevation in [Ca2+]i. These experiments also showed that not all of the intracellular vesicular Ca2+ stores can be released by agonists. From these results, we propose a model for the regulation of [Ca2+]i. 相似文献
19.
20.
Alan K. Percy John F. Moore Gordon A. Plishker Jack C. Waymire 《Neurochemical research》1991,16(4):505-511
Cultured adrenal chromaffin cells, representing a virtually homogeneous population of neuronai elements, have been utilized to examine the final enzymes in the formation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), namely, choline phosphotransferase, ethanolaminephosphotransferase, and the N-methyltransferases in the sequential methylation of PE to PC. Each enzyme has been characterized extensively in terms of substrate requirements, pH optima, detergent and cation effects, and response to inhibitors revealing properties very similar to those in other neural preparations. The respective activities are stable for up to two weeks of adrenal chromaffin cell culture suggesting that this system is a suitable model for examining the relative roles and the regulation of each pathway in PC formation.Abbreviations EPT
ethanolaminephosphotransferase
- CPT
cholinephosphotransferase
- NMT
N-methyltransferase
This work supported by funds provided to the Section of Pediatric Neurology by Texas Children's Hospital. 相似文献