首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An RNA fragment, constituting three subfragments of nucleotide sequences 1-11, 69-87 and 89-120, is the most ribonuclease-resistant part of the native 5S RNA of Escherichia coli, at 0 degrees C. A smaller fragment of nucleotide sequence 69-87 and 90-110 is ribonuclease-resistant at 25 degrees. Degradation of the L25-5S RNA complex with ribonuclease A or T2 yielded RNA fragments similar to those of the free 5S RNA at 0 degrees C and 25 degrees C; moreover L25 remained strongly bound to both RNA fragments and also produced some opening of the RNA structure in at least two positions. Protein L18 initially protected most of the 5S RNA against ribonuclease digestion, at 0 degrees C, but was then gradually released prior to the formation of the larger RNA fragment. It cannot be concluded, therefore, as it was earlier (Gray et al., 1973), that this RNA fragment contains the primary binding site of L18.  相似文献   

2.
Refolding of dimeric porcine cytosolic or mitochondrial malate dehydrogenases and of tetrameric pig heart and skeletal muscle lactate dehydrogenases (containing 5-7 cysteine residues), as well as reformation of the four cystine cross-bridges of bovine pancreatic ribonuclease, were studied in the presence of reduced and oxidized glutathione (GSH and GSSG). At the intracellular GSH level (5 mM) reduced ribonuclease can be reoxidized by 0.01-0.5 mM GSSG (pH 7.4) both at 20 degrees C and 37 degrees C. In this physiological range of GSSG concentrations and pH, the dehydrogenases show at least partial reactivation. With GSSG concentrations greater than 5 mM, reactivation is found to be completely inhibited for all the enzymes given. The results show that at the intracellular level of GSH and GSSG, thiol groups in reduced, unfolded ribonuclease are oxidized to form intramolecular cystine cross-bridges, while thiol groups of typical cysteine enzymes, such as lactate and malate dehydrogenase, remain in their reduced state during refolding. The rate of reactivation of lactate dehydrogenase (porcine muscle) is not affected by GSSG. In the case of ribonuclease, increasing concentrations of GSSG increase the rate of reactivation: At 20 degrees C, the halftime of the correct disulfide bond formation varies from approximately equal to 80 h in the presence of 0.01 mM GSSG to approximately equal to 10 h in the presence of 0.25 mM GSSG. A further increase in the rate of reactivation at higher GSSG concentrations is accompanied by a decrease in yield. Reactivation of ribonuclease is also observed at the low glutathione level found in blood plasma (5-25 microM GSH).  相似文献   

3.
Data are reported for T(m), the temperature midpoint of the thermal unfolding curve, of ribonuclease A, versus pH (range 2-9) and salt concentration (range 0-1 M) for two salts, Na(2)SO(4) and NaCl. The results show stabilization by sulfate via anion-specific binding in the concentration range 0-0.1 M and via the Hofmeister effect in the concentration range 0.1-1.0 M. The increase in T(m) caused by anion binding at 0.1 M sulfate is 20 degrees at pH 2 but only 1 degree at pH 9, where the net proton charge on the protein is near 0. The 10 degrees increase in T(m) between 0.1 and 1.0 M Na(2)SO(4), caused by the Hofmeister effect, is independent of pH. A striking property of the NaCl results is the absence of any significant stabilization by 0.1 M NaCl, which indicates that any Debye screening is small. pH-dependent stabilization is produced by 1 M NaCl: the increase in T(m) between 0 and 1.0 M is 14 degrees at pH 2 but only 1 degree at pH 9. The 14 degree increase at pH 2 may result from anion binding or from both binding and Debye screening. Taken together, the results for Na(2)SO(4) and NaCl show that native ribonuclease A is stabilized at low pH in the same manner as molten globule forms of cytochrome c and apomyoglobin, which are stabilized at low pH by low concentrations of sulfate but only by high concentrations of chloride.  相似文献   

4.
H C Shin  H A Scheraga 《FEBS letters》1999,456(1):143-145
The role of protein disulfide isomerase (PDI) in the regeneration of ribonuclease A with dithiothreitol (DTT) was investigated at three different temperatures. The rates of formation of the native protein were markedly increased in the presence of PDI, 9-fold at 15 degrees C, 6-fold at 25 degrees C and 62-fold at 37 degrees C, respectively. In the presence of PDI, major changes were found in the distribution of intermediates in the three-disulfide region at 25 and 15 degrees C and also in the one-disulfide region at 15 degrees C, with the fast accumulation of the two native-like species des-[65-72] and des-[40-95]. The present results indicate that PDI does not alter the two major parallel pathways involving des-[65-72] and des-[40-95] in the regeneration of ribonuclease A with DTT.  相似文献   

5.
A ribonuclease, with a molecular mass of 23kDa, and much higher activity toward poly(U) than poly(C) and only negligible activity toward poly(A) and poly(G), was isolated from the aqueous extract of Chinese ginseng (Panax ginseng) flowers. The ribonuclease was unadsorbed on diethylaminoethyl-cellulose and adsorbed on Affi-gel blue gel and carboxymethyl-cellulose. High activity of the ribonuclease was maintained at pH 6-7. On either side of this pH range, there was a precipitous drop in enzyme activity. The activity of the enzyme peaked at 50 degrees C and fell to about 20% of the maximal activity when the temperature was lowered to 20 degrees C or raised to 80 degrees C. The characteristics of this ribonuclease were different from those of ribonuclease previously purified from ginseng roots.  相似文献   

6.
Circular dichroism was used to monitor the thermal unfolding of ribonuclease A in 50% aqueous methanol. The spectrum of the protein at temperatures below -10 degrees C (pH* 3.0) was essentially identical to that of native ribonuclease A in aqueous solution. The spectrum of the thermally denatured material above 70 degrees C revealed some residual secondary structure in comparison to protein unfolded by 5 M Gdn.HCl at 70 degrees C in the presence or absence of methanol. The spectra as a function of temperature were deconvoluted to determine the contributions of different types of secondary structure. The position of the thermal unfolding transition as monitored by alpha-helix, with a midpoint at 38 degrees C, was at a much higher temperature than that monitored by beta-sheet, 26 degrees C, which also corresponded to that observed by delta A286, tyrosine fluorescence and hydrodynamic radius (from light scattering measurements). Thus, the loss of beta-sheet structure is decoupled from that of alpha-helix, suggesting a step-wise unfolding of the protein. The transition observed for loss of alpha-helix coincides with the previously measured transition for His-12 by NMR from a partially folded state to the unfolded state, suggesting that the unfolding of the N-terminal helix in RNase A is lost after unfolding of the core beta-sheet during thermal denaturation. The thermally denatured protein was relatively compact, as measured by dynamic light scattering.  相似文献   

7.
The pI value of rat erythrocyte 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) was determined to be 5.9 at 10 degrees C by isoelectric focusing in a horizontal slab polyacrylamide gel containing 2% carrier ampholyte (pH 3-10). In this study, ribonuclease A-glutathione mixed disulfides (RNase-SG's) (T. Ubuka et al. (1986) J. Chromatogr., 363, 431-437) were used as pI standards. A mixture of RNase-SG was prepared by reducing bovine pancreatic ribonuclease A (RNase) with dithiothreitol and then treating the reduced RNase with oxidized glutathione. The mixture was composed of eight species which contained 1 (RNase-SG1) to 8 (RNase-SG8) mol of glutathione per mole of RNase, and the pI values of these species were determined under conditions minimizing the effect of carbon dioxide. The newly determined pI values of RNase-SG1 through RNase-SG8 were 8.8, 8.2, 7.7, 7.3, 6.9, 6.4, 5.8, and 5.3, respectively. The average change in pI values of these disulfides was 0.50 pH unit per mole of the bound glutathione per mole of RNase. The RNase-SG mixture was stable in acidic solutions and could be stored at 4 degrees C as well as at -20 degrees C with little change for at least 1 year. Thus, the mixture is shown to be an excellent standard for the determination of pI values of proteins by isoelectric focusing in the wide range of pI value.  相似文献   

8.
1. Parts of the 16s and 30s RNA species of reticulocytes are readily hydrolysed by pancreatic ribonuclease. The biological activity of the ribosomes is diminished after treatment with low concentrations of the enzyme (e.g. 1ng. of ribonuclease/2.5mg. of polyribosome fraction/ml.). A high proportion of the chain scissions are ;hidden' owing to the secondary structure of the RNA moiety. 2. As the concentration of ribonuclease is increased RNA is lost from the ribosome. About 20-30% of the RNA may be removed from the ribosome without altering appreciably its sedimentation coefficient or its appearance in the electron microscope. 3. The amount of RNA removed from the ribosome is not increased by raising the concentration of enzyme from about 1mug. to 2.5mg. of ribonuclease/2.5mg. of polyribosome fraction/ml., or by increasing the temperature from 0 degrees to 30 degrees , or by first converting the RNA moiety into a single-stranded form before exposure to ribonuclease. 4. Untreated polyribosomes aggregate at about 75 degrees , whereas ribosomes treated with ribonuclease aggregate at about 45 degrees . The aggregates that are found on heating ribosomes after enzymic hydrolysis contain about 40-50% of the complement of RNA of intact ribosomes. 5. From the size of the fragments of RNA isolated from RNA-depleted ribosomes it is inferred that there is one site/60-100 nucleotides that is sensitive to ribonuclease. 6. The RNA moiety of RNA-depleted ribosomes has some double-helical character as shown by the optical properties and X-ray-diffraction pattern of ribonuclease-treated ribosomes and by the ;melting' properties of the isolated RNA. 7. Subparticles prepared by titration with an excess of EDTA are readily hydrolysed by ribonuclease to fragments of S(20,w) less than 4s, in contrast with the intact particle.  相似文献   

9.
The kinetics of refolding of ribonuclease A have been measured at -15 degrees C by monitoring the intrinsic fluorescence and absorbance signals from the six tyrosine residues. For each probe multiphasic kinetics were observed. The burial of tyrosine residues, as determined by the change in absorbance at 286 nm, revealed four phases, whereas the kinetics of refolding monitored by fluorescence revealed only two phases. The rates of the transients detected by fluorescence were independent of pH. One of the faster transients detected by delta A286 involved a decrease in absorbance, which is consistent with solvent exposure, rather than burial, and suggests the possibility of an abortive partially folded intermediate in the earlier stages of folding. Double-jump unfolding assays were used to follow the buildup and decay of an intermediate in the refolding reaction at -15 degrees C. At both pH* 3.0 and pH* 6.0 the maximum concentration of the intermediate was 25-30% of the total protein. The existence of a second pathway of slow folding was inferred from the difference in rate of formation of native enzyme and breakdown of the observed intermediate, and by computer simulations. In addition, the unfolding assay demonstrated that 20% of the unfolded protein was converted to native at a much faster rate, consistent with observations in aqueous solution that 80% of unfolded ribonuclease A consists of slow-folding species. Kinetics and amplitude data from these and other refolding experiments with different probes were used to develop possible models for the pathway of refolding. The simplest system consistent with the results for the slow-refolding species involves two parallel pathways with multiple intermediates on each of them. Several independent lines of evidence indicate that about 30% of the unfolded state refolds by the minor pathway, in which the slowest observed phase is attributed to the isomerization of Pro-93. The major pathway involves 50% of the unfolded state; the reason why it refolds slowly is not apparent. A native-like intermediate is formed considerably more rapidly in the major slow-refolding pathway, compared to the minor pathway.  相似文献   

10.
The influence of temperature on the extraction kinetics of Cyclosporin A (CyA) from the mycelia of Tolypocladium inflatum was examined in this study. The extraction of CyA from mycelia was performed in a 2-L stirred, baffled vessel using 30% v/v aqueous methanol. The temperature range used was from 5 to 45 degrees C. A linear relationship was found between the extraction yield of CyA and temperature. As the temperature increased, the yield of CyA increased with a maximum CyA yield of 18.3% obtained at 45 degrees C, which is 21.3% higher than the yield at 25 degrees C. The activation energy for the extraction of CyA from T. inflatum was found to be 36.7 kJ/mol, which indicates that the extraction of CyA from T. inflatum is controlled by both solubilization of CyA and diffusion of CyA through the solid phase of mycelia. The overall mass transfer coefficient, k(L)a(S), was found to increase from 1.02 x 10(-3) to 1.34 x 10(-2) s(-1) as the temperature increased from 5 to 45 degrees C. The effective diffusivity of CyA in the solid matrix of mycelia was found to increase from 1.05 x 10(-15) to 1.43 x 10(-14) m(2)/s as the temperature increased from 5 to 45 degrees C. A mathematical diffusion model was developed and was used to fit the experimental kinetic data of CyA extraction and determination of CyA effective diffusivities at different temperatures. This is the first time CyA diffusivities as a function of extraction temperature are reported in the literature.  相似文献   

11.
Enzyme thermoinactivation in anhydrous organic solvents   总被引:3,自引:0,他引:3  
Three unrelated enzymes (ribonuclease, chymotrypsin, and lysozyme) display markedly enhanced thermostability in anhydrous organic solvents compared to that in aqueous solution. At 110-145 degrees C in nonaqueous media all three enzymes inactivate due to heat-induced protein aggregation, as determined by gel filtration chromatography. Using bovine pancreatic ribonuclease A as a model, it has been established that enzymes are much more thermostable in hydrophobic solvents (shown to be essentially inert with respect to their interaction with the protein) than in hydrophilic ones (shown to strip water from the enzyme). The heat-induced aggregates of ribonuclease were characterized as both physically associated and chemically crosslinked protein agglomerates, with the latter being in part due to transamidation and intermolecular disulfide interchange reactions. The thermal denaturation of ribonuclease in neat organic solvents has been examined by means of differential scanning calorimetry. In hydrophobic solvents, the enzyme exhibits greatly enhanced thermal denaturation temperatures (T(m) values as high as 124 degrees C) compared to aqueous solution. The thermostability of ribonuclease towards heat-induced denaturation and aggregation decreases as the water content of the protein powder increases. The experimental data obtained suggest that enzymes are extremely thermostable in anhydrous organic solvents due to their conformational rigidity in the dehydrated state and their resistance to nearly all the covalent reactions causing irreversible thermoinactivation of enzymes in aqueous solution.  相似文献   

12.
The temperature (-7 degrees C to 45 degrees C, pH 5.4) and pH (0 degrees C) dependence of 1H chemical shifts of ribonuclease S-peptide (5 mM, 1 M NaCl) has been measured at 360 MHz. The observed variations evidence the formation of a partial helical structure, involving the fragment Thr-3-Met-13. Two salt-bridges stabilize the helix: those formed by Glu-9- ...His-12+ and Glu-2- ...Arg-10+. The structural features deduced from the 1H-NMR at low temperature for the isolated S-peptide are compatible with the structure shown by the same molecule in the ribonuclease S crystal.  相似文献   

13.
Recent work has shown that, with synthetic analogues of C-peptide (residues 1-13 of ribonuclease A), the stability of the peptide helix in H2O depends strongly on the charge on the N-terminal residue. We have asked whether, in semisynthetic ribonuclease S reconstituted from S-protein plus an analogue of S-peptide (1-15), the stability of the peptide helix is correlated with the Tm of the reconstituted ribonuclease S. Six peptides have been made, which contain Glu9----Leu, a blocked alpha-COO- group (-CONH2), and either Gln11 or Glu11. The N-terminal residue has been varied; its charge varies from +2 (Lys) to -1 (succinyl-Ala). We have measured the stability of the peptide helix, the affinity of the peptide for S-protein (by C.D. titration), and the thermal stability of the reconstituted ribonuclease S. All six peptide analogues show strongly enhanced helix formation compared to either S-peptide (1-15) or (1-19), and the helix content increases as the charge on the N-terminal residue changes from +2 to -1. All six peptides show increased affinity for S-protein compared to S-peptide (1-19), and all six reconstituted ribonucleases S show an increase in Tm compared to the protein with S-peptide (1-19). The Tm increases as the charge on residue 1 changes from +2 to -1. The largest increment in Tm is 6 degrees. The results suggest that the stability of a protein can be increased by enhancing the stability of its secondary structure.  相似文献   

14.
In aqueous suspensions of purple membranes (pH 10.2, 0.4 M KCl) an intermediate having an absorption maximum at 570-575 nm (at -196 degrees C) was produced by first heating the M intermediate up to -30 degrees C and then stabilizing it by subsequent cooling to -60 degrees C. We suggest that this species is the intermediate N (or P or R) found and characterized earlier near room temperature. Upon illumination at -196 degrees C N is transformed into a bathochromically absorbing species KN which has an absorption maximum near 605 nm and an extinction 1.35 times that of N. This light reaction is photoreversible. The quantum yield ratio for the forward and back reaction is 0.18 +/- 0.02. The maximum photo steady state concentration of KN is about 0.24. The N intermediate was also trapped in water suspensions of purple membranes at neutral pH and low salt concentration by illumination at lambda greater than 620 nm during cooling. In addition to N another intermediate absorbing in the red (maximum at 610-620 nm) was accumulated in smaller amounts. It is not photoactive at -196 degrees C and apparently is the O intermediate or a photoproduct of N.  相似文献   

15.
Mitochondria were stained in liver, kidney, pancreas, adrenal and intestinal mucosa of rat and mouse. Tissues 1 mm thick, were fixed in a mixture of saturated aqueous HgCl2, 90 ml; formalin (37-38% HCHO), 10 ml, at room temperature (25°C) for 1 hr. Deparaffinized sections 3-4μ thick were treated with Lugol's iodine (U.S.P.) followed by Na2S2O3 (5%), rinsed in water and the ribonucleic acid removed by any of the following procedures: 0.2 M McIlavaine's buffer, pH 7.0, 2 hr, or 0.2 M phosphate buffer, pH 7.0, 2 hr at 37°C; 0.1% aqueous ribonuclease, 2 hr at 37°C; 5% aqueous trichloracetic acid overnight at 37°C; or 1% KOH at room temperature for 1 hr. After washing in water, sections were treated with a saturated solution of ferric ammonium alum at 37°C for 8-12 hr and colored by Regaud's ripened hematoxylin for 18 hr. They were then differentiated in 1% ferric ammonium alum solution while under microscopic observation.  相似文献   

16.
The effect of temperature variation on biomethanation at high altitude   总被引:1,自引:0,他引:1  
The aim of the current study was to examine effects of daily temperature variations on the performance of anaerobic digestion. Forced square-wave temperature variations (between 11 and 25, 15 and 28, and 19 and 32 degrees C) were imposed on a bench-scale digester using a mixture of llama-cow-sheep manure in a semi-continuous process. The volumetric biogas production rate, methane yield, and the volatile solid reductions were compared with the results obtained from anaerobic digestion (AD) at constant temperatures. The forced cyclic variations of temperature caused large cyclic variations in the rate of gas production and the methane content. As much as 94-97% of the daily biogas was obtained in the 12h half-cycle at high temperature. The values for volumetric biogas production rate and methane yield increased at higher temperatures. The average volumetric biogas production rate for cyclic operation between 11 and 25 degrees C was 0.22Ld(-1)L(-1) with a yield of 0.07m3CH4kg(-1) VS added (VSadd), whereas for operation between 15 and 29 degrees C the volumetric biogas production rate increased by 25% (to 0.27Ld(-1)L(-1) with a yield of 0.08m3CH4kg(-1) VSadd). In the highest temperature region a further increase of 7% in biogas production was found and the methane yield was 0.089m(3)CH(4)kg(-1) VSadd. The employed digester showed an immediate response when the temperature was elevated, which indicates a well-maintained metabolic capacity of the methanogenic bacteria during the period of low temperature. Overall, periodic temperature variations appear to give less decrease in process performance than a priori anticipated.  相似文献   

17.
4-Arsono-2-nitrofluorobenzene reacts selectively at the anion binding site of bovine pancreatic ribonuclease A. The major derivative is the inactive 41-(4-arsono-2-nitrophenyl) ribonuclease A (45% yield). Additional products are 1-alpha-(4-arsono-2-nitrophenyl) ribonuclease A (11% yield) which is enzymatically active and the disubstituted, inactive 1,41-bis-(4-arsono-2-nitrophenyl) ribonuclease A (25% yield). 2' (3')-O-Bromoacetyluridine reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A exclusively at the histidine-12 residue at a rate which is approximately one-fourth the rate observed with the unmodified enzyme. Saturation kinetics are observed and the dissociation constant for the protein-inhibitor complex is 0.096 +/- 0.023 M. The first-order unimolecular decomposition constant for complex breakdown is 8.9 +/- 2.9 X 10(-4) s-1. 2'-Bromoacetamido-2'-deoxyuridine reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A 25 times more slowly than 2'(3')-O-bromoacetyluridine. Bromoacetate reacts with 41-(4-arsono-2-nitrophenyl) ribonuclease A predominantly at the histidine-119 residue at a rate 45 times less than that found for the unmodified enzyme. The results of the alkylation studies imply that the dianionic arsonate does not occupy the phosphate binding site in the enzyme but is sufficiently proximate to account for a decrease in bromoacetate binding as well as a reduction in the nucleophilic reactivity of histidine-12 and -119. All these effects may be accounted for in terms of a local electrostatic perturbation of the active site region by the arsononitrophenyl group.  相似文献   

18.
1. A ribonuclease isolated from porcine thyroid cytosol using phenol: sodium dodecylsulfate treatment was associated with RNA and identical to latent alkaline ribonuclease. 2. Distribution of activity between aqueous and phenolic phases depended on pH, RNA, and ribonuclease inhibitor. 3. The ribonuclease was totally resistant to urea, guanidinium: HCl, chloroform:isoamyl alcohol, ethanol, heating at 100 degrees C for 10 min or at 80 degrees C plus 100 mM NaCl. It was highly resistant to hydrolysis by proteinase K except in the presence of detergent. 4. The extreme stability and other properties of latent alkaline ribonuclease could be the result of its association with RNA.  相似文献   

19.
F X Schmid 《FEBS letters》1986,198(2):217-220
The trans----cis isomerization of Pro 93 was measured during refolding of bovine ribonuclease A. This isomerization is slow (tau = 500 s) under marginally stable folding conditions of 2.0 M GdmCl, pH 6, at 10 degrees C. However, it is strongly accelerated (tau = 100 s) in samples which, prior to isomerization, had been converted to a folding intermediate by a 15 s refolding pulse under strongly native conditions (0.8 M ammonium sulfate, 0 degree C). The results demonstrate that extensive folding is possible before Pro 93 isomerizes to its native cis state and that the presence of structural folding intermediates leads to a marked increase in the rate of subsequent proline isomerization.  相似文献   

20.
Two derivatives of pancreatic ribonuclease and endonuclease of Staphylococcus aureus, insolubilized on corn cob, have been used to reduce the percentage of nucleic acids in single cell protein (SCP) concentrates from yeasts. These derivatives are thermostable and active at 45 degrees C. At these temperatures the contamination by bacteria is negligible. The thermostability is remarkable, since the native nuclease is deactivated at above 39 degrees C. The hydrolysis of the nucleic acids in SCP is carried out first with the ribonuclease derivative followed by the endonuclease derivative. The catalytic activity of the insolubilized derivatives is similar to that of the native enzymes in the hydrolysis of RNA but not of DNA. The percentage of nucleic acids is reduced from 5-15 to 0.5%, with a loss of protein of 6%. These percentages are lower than those previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号