首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The gravitropism of caulonemata of Pottia intermedia is described and compared with that of other mosses. Spore germination produces primary protonemata including caulonemata which give rise to buds that form the leafy moss plant, the gametophore. Primary caulonemata are negatively gravitropic but their growth and the number of filaments are limited in the dark. Axenic culture of gametophores results in the production of secondary caulonemata that usually arise near the leaf base. Secondary protonemata that form in the light are agravitropic. Secondary caulonemata that form when gametophores are placed in the dark for several days show strong negative gravitropism and grow well in the dark. When upright caulonemata are reorientated to the horizontal or are inverted, upward bending can be detected after 1 h and caulonemata reach the vertical within 1-2 d. Clear amyloplast sedimentation occurs 10-15 minutes after horizontal placement and before the start of upward curvature. This sedimentation takes place in a sub-apical zone. Amyloplast sedimentation also takes place along the length of upright and inverted Pottia protonemata. These results support the hypothesis that amyloplast sedimentation functions in gravitropic sensing since sedimentation occurs before gravitropism in Pottia and since the location and presence of a unique sedimentation zone is conserved in all four mosses known to gravitropic protonomata.  相似文献   

2.
Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.  相似文献   

3.
In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable.  相似文献   

4.
Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005-0.001 microliter L-1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2 (lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth.  相似文献   

5.
Although circumnutation occurs widely in higher plants, its mechanism is little understood. The idea that circumnutation is based on gravitropism has long been investigated, but the reported results have been controversial. We used dark-grown coleoptiles of rice (Oryza sativa L.) to re-investigate this issue. The following results supported the existence of a close relationship between gravitropism and circumnutation: (1) circumnutation disappears on a horizontal clinostat; (2) circumnutation is interrupted by a gravitropic response and re-initiated at a definable phase after gravitropic curvature; (3) circumnutation can be re-established by submergence and a brief gravitropic stimulation in the coleoptiles that have stopped nutating in response to red light; and (4) lazy mutants show no circumnutation. In spite of these results, however, there were cases in which gravitropism and circumnutation could be separated. Firstly, the non-circumnutating lazy coleoptile showed nearly a wild-type level of gravitropic responsiveness in its upper half, although this part was an active site of both gravitropism and circumnutation in wild-type coleoptiles. Secondly, coleoptiles could nutate without overshooting the vertical when developing phototropic curvature. It is concluded that gravitropism influences, but it is not directly involved in the process of circumnutation. It is further suggested that a gravity signal, shared with gravitropism, contributes to the maintenance of circumnutation.  相似文献   

6.
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.  相似文献   

7.
H Fukaki  H Fujisawa    M Tasaka 《Plant physiology》1996,110(3):945-955
In higher plants shoots show a negative gravitropic response but little is known about its mechanism. To elucidate this phenomenon, we have isolated a number of mutants with abnormal shoot gravitropic responses in Arabidopsis thaliana. Here we describe mainly three mutants: sgr1-1, sgr2-1, and sgr3-1 (shoot gravitropism). Genetic analysis confirmed that these mutations were recessive and occurred at three independent loci, named SGR1, SGR2, and SGR3, respectively. In wild type, both inflorescence stems and hypocotyls show negative gravitropic responses. The sgr1-1 mutants showed no response to gravity either by inflorescence stems or by hypocotyls. The sgr2-1 mutants also showed no gravitropic response in inflorescence stems but showed a reduced gravitropic response in hypocotyls. In contrast, the sgr3-1 mutant was found to have reduced gravitropic responses in inflorescence stems but normal gravitropic responses in hypocotyls. These results suggest that some genetic components of the regulatory mechanisms for gravitropic responses are common between inflorescence stems and hypocotyls, but others are not. In addition, these sgr mutants were normal with respect to root gravitropism, and their inflorescence stems and hypocotyls could carry out phototropism. We conclude that SGR1, SGR2, and SGR3 are novel genetic loci specifically involved in the regulatory mechanisms of shoot gravitropism in A. thaliana.  相似文献   

8.
H Fukaki  H Fujisawa    M Tasaka 《Plant physiology》1996,110(3):933-943
We have characterized the gravitropic response of inflorescence stems in Arabidopsis thaliana. When the inflorescence stems were placed horizontally, they curved upward about 90 degrees within 90 min in darkness at 23 degrees C, exhibiting strong negative gravitropism. Decapitated stem segments (without all flowers, flower buds, and apical apices) also showed gravitropic responses when they included the elongation zone. This result indicates that the minimum elements needed for the gravitropic response exist in the decapitated inflorescence stem segments. At least the 3-min gravistimulation time was sufficient to induce the initial curvature at 23 degrees C after a lag time of about 30 min. In the gravitropic response of inflorescence stems, (a) the gravity perception site exists through the elongating zone, (b) auxin is involved in this response, (c) the gravitropic curvature was inhibited at 4 degrees C but at least the gravity perception step could occur, and (d) two curvatures could be induced in sequence at 23 degrees C by two opposite directional horizontal gravistimulations at 4 degrees C.  相似文献   

9.
Root tip is capable of sensing and adjusting its growth direction in response to gravity, a phenomenon known as root gravitropism. Previously, we have shown that negative gravitropic response of roots (NGR) is essential for the positive gravitropic response of roots. Here, we show that NGR, a plasma membrane protein specifically expressed in root columella and lateral root cap cells, controls the positive root gravitropic response by regulating auxin efflux carrier localization in columella cells and the direction of lateral auxin flow in response to gravity. Pharmacological and genetic studies show that the negative root gravitropic response of the ngr mutants depends on polar auxin transport in the root elongation zone. Cell biology studies further demonstrate that polar localization of the auxin efflux carrier PIN3 in root columella cells and asymmetric lateral auxin flow in the root tip in response to gravistimulation is reversed in the atngr1;2;3 triple mutant. Furthermore, simultaneous mutations of three PIN genes expressed in root columella cells impaired the negative root gravitropic response of the atngr1;2;3 triple mutant. Our work revealed a critical role of NGR in root gravitropic response and provided an insight of the early events and molecular basis of the positive root gravitropism.  相似文献   

10.
The filamentous gametophyte of the moss Physcomitrella patens consists of two filament types called chloronemata and caulonemata. Chloronemal cells are photosynthetically active with numerous chloroplasts, while caulonemata help to spread the colony by radial growth. The balance between the two filament types is affected by external factors such as light and plant hormones. In the present study, caulonema formation and chloronemal branching have been monitored during high and low light conditions and in the presence of glucose, auxin, or cytokinin. These experiments were performed both in a wild-type strain and in a hxk1 knockout mutant which lacks the major hexokinase of Physcomitrella. It was found that caulonema formation is induced by high energy conditions such as high light and external glucose, while chloronemal branching is stimulated by low energy conditions such as reduced light, and in the hxk1 mutant. The hxk1 mutation also causes buds to appear on chloronemal filaments, which is rarely seen in the wild type, and shows increased sensitivity to cytokinin and abscisic acid. Based on these findings a model is proposed in which the energy supply of the moss colony regulates the balance between chloronemal and caulonemal growth.  相似文献   

11.
How developing seedlings integrate gravitropic and phototropic stimuli to determine their direction of growth is poorly understood. In this study we tested whether blue light influences hypocotyl gravitropism in Arabidopsis. Phototropin1 (phot1) triggers phototropism under low fluence rates of blue light but, at least in the dark, has no effect on gravitropism. By analyzing the growth orientation of phototropism-deficient seedlings in response to gravitropic and phototropic stimulations we show that blue light not only triggers phototropism but also represses hypocotyl gravitropism. At low fluence rates of blue light phot1 mutants were agravitropic. In contrast, phyAphot1 double mutants grew exclusively according to gravity demonstrating that phytochrome A (phyA) is necessary to inhibit gravitropism. Analyses of phot1cry1cry2 triple mutants indicate that cryptochromes play a minor role in this response. Thus the optimal growth orientation of hypocotyls is determined by the action of phyA-suppressing gravitropism and the phototropin-triggering phototropism. It has long been known that phytochromes promote phototropism but the mechanism involved is still unknown. Our data show that by inhibiting gravitropism phyA acts as a positive regulator of phototropism.  相似文献   

12.
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.  相似文献   

13.
Buer CS  Sukumar P  Muday GK 《Plant physiology》2006,140(4):1384-1396
Plant organs change their growth direction in response to reorientation relative to the gravity vector. We explored the role of ethylene in Arabidopsis (Arabidopsis thaliana) root gravitropism. Treatment of wild-type Columbia seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC) reduced root elongation and gravitropic curvature. The ethylene-insensitive mutants ein2-5 and etr1-3 had wild-type root gravity responses, but lacked the growth and gravity inhibition by ACC found in the wild type. We examined the effect of ACC on tt4(2YY6) seedlings, which have a null mutation in the gene encoding chalcone synthase, the first enzyme in flavonoid synthesis. The tt4(2YY6) mutant makes no flavonoids, has elevated indole-3-acetic acid transport, and exhibits a delayed gravity response. Roots of tt4(2YY6), the backcrossed line tt4-2, and two other tt4 alleles had wild-type sensitivity to growth inhibition by ACC, whereas the root gravitropic curvature of these tt4 alleles was much less inhibited by ACC than wild-type roots, suggesting that ACC may reduce gravitropic curvature by altering flavonoid synthesis. ACC treatment induced flavonoid accumulation in root tips, as judged by a dye that becomes fluorescent upon binding flavonoids in wild type, but not in ein2-5 and etr1-3. ACC also prevented a transient peak in flavonoid synthesis in response to gravity. Together, these experiments suggest that elevated ethylene levels negatively regulate root gravitropism, using EIN2- and ETR1-dependent pathways, and that ACC inhibition of gravity response occurs through altering flavonoid synthesis.  相似文献   

14.
Inositol 1,4,5-trisphosphate (InsP3) has been implicated in the early signaling events of plants linking gravity sensing to the initiation of the gravitropic response. However, at present, the contribution of the phosphoinositide signaling pathway in plant gravitropism is not well understood. To delineate the role of InsP3 in plant gravitropism, we generated Arabidopsis (Arabidopsis thaliana) plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme that specifically hydrolyzes InsP3. The transgenic plants show no significant differences in growth and life cycle compared to wild-type plants, although basal InsP3 levels are reduced by greater than 90% compared to wild-type plants. With gravistimulation, InsP3 levels in inflorescence stems of transgenic plants show no detectable change, whereas in wild-type plant inflorescences, InsP3 levels increase approximately 3-fold within the first 5 to 15 min of gravistimulation, preceding visible bending. Furthermore, gravitropic bending of the roots, hypocotyls, and inflorescence stems of the InsP 5-ptase transgenic plants is reduced by approximately 30% compared with the wild type. Additionally, the cold memory response of the transgenic plants is attenuated, indicating that InsP3 contributes to gravisignaling in the cold. The transgenic roots were shown to have altered calcium sensitivity in controlling gravitropic response, a reduction in basipetal indole-3-acetic acid transport, and a delay in the asymmetric auxin-induced beta-glucuronidase expression with gravistimulation as compared to the controls. The compromised gravitropic response in all the major axes of growth in the transgenic Arabidopsis plants reveals a universal role for InsP3 in the gravity signal transduction cascade of plants.  相似文献   

15.
The majority of understanding of root gravity responses comes from the study of primary roots, even though lateral roots make a far greater contribution to root system architecture. The focus of this report is the analysis of gravitropic responses in lateral roots of wild-type background and pgm-1 mutants. Despite the significant reduction in gravitropic response of primary roots of pgm-1 mutants, the lateral roots of this mutant demonstrate wild-type rates of gravitropism, suggesting a significant difference in gravity signal transduction between primary and lateral roots.Key words: gravitropism, lateral roots, pgm-1, root system architecturePlants are extremely sensitive to numerous environmental stimuli, including touch, gravity, light and humidity, among many others. As a pervasive signal on Earth, gravity exerts a persistent influence on plant morphogenesis by directing the primary roots and shoots of most species to align parallel with the gravity vector. The vertical orientations obtained by primary organs has provided for a simple assay of gravitropic responses, and much of our understanding of gravity stimulus perception, signal transduction and differential growth response has been gained by a focus on primary organ systems.With respect to gravity stimulus perception, there is strong evidence that the movement of starch-filled plastids plays a primary role in the detection of a change in the orientation of an organ relative to gravity.1 Consistent with this evidence, we have recently demonstrated that roots of the starchless mutant of Arabidopsis, pgm-1, respond to gravity at approximately 30% the rate of wild-type roots, and that they lack the wild-type relationship between cap angle and response rate.2 Furthermore, pgm-1 roots lack the gravity-induced gradient of auxin reported by DR5-GFP expression, found in wild-type roots, linking plastid sedimentation with the differential auxin transport thought to mediate the differential growth response.3While our understanding of root gravitropism has grown in sophistication and detail, the emerging picture has been compiled almost entirely from observations of primary organ behavior. The degree to which our model of signaling involved in primary root gravitropic responses applies to the behavior of lateral roots is an almost entirely open question, with only a handful of studies investigating lateral root gravitropic responses.46 Toward that end, we have begun to explore the question of lateral root gravitropism in the overall context of root system architecture, and wish to report here on the gravitropic response of lateral roots in wild-type and pgm-1 genetic backgrounds.  相似文献   

16.
Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.  相似文献   

17.
Four genetic loci were recently identified by mutations that affect phototropism in Arabidopsis thaliana (L.) Heyhn. seedlings. It was hypothesized that one of these loci, NPH1, encodes the apoprotein for a phototropic photoreceptor. All of the alleles at the other three mutant loci (nph2, nph3, and nph4) contained wild-type levels of the putative NPH1 protein and exhibited normal blue-light-dependent phosphorylation of the NPH1 protein. This indicated that the NPH2, NPH3, and NPH4 proteins likely function downstream of NPH1 photoactivation. We show here that, although the nph2, nph3, and nph4 mutants are all altered with respect to their phototropic responses, only the nph4 mutants are also altered in their gravitropic responsiveness. Thus, NPH2 and NPH3 appear to act as signal carriers in a phototropism-specific pathway, whereas NPH4 is required for both phototropism and gravitropism and thus may function directly in the differential growth response. Despite their altered phototropic responses in blue and green light as etiolated seedlings, the nph2 and nph4 mutants exhibited less dramatic mutant phenotypes as de-etiolated seedlings and when etiolated seedlings were irradiated with unilateral ultraviolet-A (UV-A) light. Examination of the phototropic responses of a mutant deficient in biologically active phytochromes, hy1-100, indicated that phytochrome transformation by UV-A light mediates an increase in phototropic responsiveness, accounting for the greater phototropic curvature of the nph2 and nph4 mutants to UV-A light than to blue light.  相似文献   

18.
Vitha S  Zhao L  Sack FD 《Plant physiology》2000,122(2):453-462
Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.  相似文献   

19.
The shoots of a Japanese strain of morning glory ( Pharbitis nil  ) called 'Shidare-asagao' display agravitropic and weeping growth. It has been shown that this shoot agravitropism may be due to the defective differentiation of endodermal cells that contain statoliths. Roots of the weeping morning glory show normal responsiveness to gravity and the shoots are positively phototropic. Shoots of the morning glory cultivar Violet used as a wild type exhibited distinct circumnutation with circular movements that increase as the plants grow. In weeping morning glory, however, nutation was limited to slight back and forth or side to side movements. To determine whether endodermal cells participate in circumnutation through a function that is independent of their role in gravitropism, the nutational movements of various gravitropic mutants of Arabidopsis thaliana were compared. The inflorescences of wild-type Arabidopsis showed relatively large circular movements. Inflorescences of the pgm-1 mutant, which is defective in starch synthesis, showed reduced nutation. Even more seriously affected were the sgr1-1 / scr-3 and sgr7-1 / shr-2 mutants, which are defective in endodermal cell differentiation, and the auxin-resistant axr2-1 mutant showed no significant nutational movements at all. 1- N -naphthylphthalamic acid (NPA) could inhibit Violet circumnutation, supporting the notion that auxin participates in circumnutation. Thus, the gravitropic response is an essential component in plant shoot circumnutation. Endodermal cells are involved in such circumnutation possibly because of their role in inducing the gravitropic response.  相似文献   

20.
Growth and gravitropism have been studied in three mutant strains of Arabidopsis thaliana L, that are resistant to auxin-herbicide. Two of the mutations are allelic and recessive ( aux-1 and aux-2 ) and are unlinked to a dominant mutation, Dwf , which confers a very high level of auxin-resistance and is apparently lethal when homozygous. The aux-1 and Dwf strains have altered response to gravity whereas aux-2 appears to be gravitropically normal.
After 96 h in the normal, vertical position only minor differences in elongation were observed between roots of wild-type, aux-1 and aux-2 , but the hypocotyls of aux-1 were significantly retarded compared with the gravitropically normal aux-2 and wild-type. In the progeny of selfed Dwf plants, where both normal ( dwf ) and agravitropic ( Dwf ) seedlings are present, the Dwf seedlings had much longer roots and shorter hypocotyls than dwf +. During 22 h of continuous stimulation the optimum angle for gravitropism in wild-type roots and hypocotyls was 135° (i.e. the organ points obliquely upwards), with decreasing responses in the order 90° and 45°. The agravitropic nature of the roots of aux-1 was confirmed as no significant response was obtained at any of the stimulation angles. In marked contrast, the negative gravitropic response of aux-1 hypocotyls was greater than the wild-type response in terms of the final angle attained at 22 h, but between 6 and 22 h the elongation rate was lower in aux-1 . After varying stimulation periods in the horizontal position, the curvature which had developed, decreased rapidly and almost disappeared during ensuing rotation on clinostats (2 and 4 rpm). Rotation on the clinostats had no effect on the agravitropic behaviour of aux-1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号