首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The programmed death (PD)-1/PD-1 ligands (PD-Ls) pathway, is a new member of the B7/CD28 family, and consists of the PD-1 receptor and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273). Recently, it is reported that PD-1, PD-L1 and PD-L2 also have soluble forms aside from their membrane bound forms. The soluble forms increase the diversity and complexity of PD-1/PD-Ls pathway in both composition and function. The PD-1/PD-Ls pathway is broadly expressed and exerts a wider range of immunoregulatory roles in T-cell activation and tolerance compared with other B7/CD28 family members. Studies show that the PD-1/PD-Ls pathway regulates the induction and maintenance of peripheral tolerance and protects tissues from autoimmune attack in physiological conditions. In addition, it is also involved in various diseases mediated by T cells, such as autoimmunity, tumor immunity, chronic viral infections, and transplantation immunity. In this review, we will summarize the relevance of the soluble forms and the latest researches on the role of PD-1/PD-Ls pathway in autoimmune diseases.  相似文献   

2.
Adoptive cell transfer (ACT), either using rapidly expanded tumor infiltrating lymphocytes or T-cell receptor transduced peripheral blood lymphocytes, can be considered one of the most promising approaches in cancer immunotherapy. ACT results in the repopulation of the host with high frequencies of tumor-specific T cells; however, optimal function of these cells within the tumor micro-environment is required to reach long-term tumor clearance. We and others have shown that ongoing anti-tumor immune responses can be impaired by the expression of ligands, such as PD-L1 (B7-H1) on tumor cells. Such inhibitory molecules can affect T cells at the effector phase via their receptor PD-1. PD-L1/PD-1 interaction has indeed been shown crucial in inducing T-cell anergy and maintaining peripheral tolerance. In order to maximize anti-tumor responses, antibodies that target the PD-1/PD-L1 axis are currently in phase I/II trials. Alternatively, a more refined approach could be the selective targeting of PD-1 in tumor-specific T cells to obtain long-term resistance against PD-1-mediated inhibition. We addressed whether this goal could be achieved by means of retroviral siRNA delivery. Effective siRNA sequences resulting in the reduction of surface PD-1 expression led to improved murine as well as human T-cell immune functions in response to PD-L1 expressing melanoma cells. These data suggest that blockade of PD-1-mediated T-cell inhibition through siRNA forms a promising approach to achieve long-lasting enhancement of tumor-specific T-cell function in adoptive T-cell therapy protocols.  相似文献   

3.
Targeted adoptive immunotherapy with engineered T cells is a promising treatment for refractory hematologic malignancies. However, many patients achieving early complete remissions ultimately relapse. Immunosuppressive ligands are expressed on tumor and supportive cells in the tumor microenvironment (TME). When activated, T cells express associated “checkpoint” receptors. Binding of co-inhibitory ligands and receptors may directly contribute to T-cell functional exhaustion. It is not known whether all T cells engineered to express chimeric antigen receptors (CARs) are subject to checkpoint-mediated regulation. It is also unknown whether distinct CAR signaling moieties modulate T-cell responsiveness to these inhibitory pathways. We have, therefore, directly compared functional co-inhibition in engineered T cells identically targeted to the tumor-associated antigen CD123, but distinct in their mode of T-cell activation: via the endogenous T-cell receptor (ENG), or downstream of CD28 or 41BB-containing CARs. In all cases, we have observed antigen-independent T-cell activation associated with upregulation of the co-inhibitory receptors programmed cell death protein 1 (PD-1, CD279), Tim-3 and Lag-3. Notably, CD28.CAR T cells were uniquely susceptible to PD-1/PD-L1 mediated checkpoint inhibition. Together, our data indicate that PD-1/PD-L1 checkpoint blocking agents may be considered clinically when CD28.CAR T cells do not perform optimally in human trials.  相似文献   

4.
Antibody-based PD-1/PD-L1 blockade therapies have taken center stage in immunotherapies for cancer, with multiple clinical successes. PD-1 signaling plays pivotal roles in tumor-driven T-cell dysfunction. In contrast to prior approaches to generate or boost tumor-specific T-cell responses, antibody-based PD-1/PD-L1 blockade targets tumor-induced T-cell defects and restores preexisting T-cell function to modulate antitumor immunity. In this review, the fundamental knowledge on the expression regulations and inhibitory functions of PD-1 and the present understanding of antibody-based PD-1/ PD-L1 blockade therapies are briefly summarized. We then focus on the recent breakthrough work concerning the structural basis of the PD-1/PD-Ls interaction and how therapeutic antibodies, pembrolizumab targeting PD-1 and avelumab targeting PD-L1, compete with the binding of PD-1/PD-L1 to interrupt the PD-1/PD-L1 interaction. We believe that this structural information will benefit the design and improvement of therapeutic antibodies targeting PD-1 signaling.  相似文献   

5.
BackgroundDespite recent advances in understanding the complex immunologic dysfunction in the tumor microenvironment (TME), fewer than 20% of patients with head and neck squamous cell carcinoma (HNSCC) respond to immune checkpoint blockade (ICB). Thus, it is important to understand how inhibitory IC receptors maintain the suppressed dysfunctional TME, and to develop more effective combination immunotherapy. This study evaluated the immune-modulating effects of Curcumin, which has well-established anti-cancer and chemopreventive properties, and its long-term safety as a phytochemical drug.MethodsWe carried out the western blot and small interfering RNA (siRNA) transfection assay to evaluate the effects of Curcumin on IC ligands and IC ligands function in HNSCC. Through T-cell cytotoxicity assay and measurements of cytokine secretion, we assessed the effects of combination of Curcumin with programmed death-ligand 1 (PD-L1) Ab on cancer cell killing. Flow cytometry were used to analyze the effects of Curcumin on the expression of programmed cell death protein 1 (PD-1) and T-cell immunoglobulin and mucin-domain3 (TIM-3) on CD4, CD8 and Treg. Immunofluorescence, immunohistochemistry and western blot were used to detecte the cytokine (IFN-γ, Granzyme B), IC receptors (PD-1 and TIM-3) and its ligands (PD-L1, PD-L2, Galectin-9) in xenograft mouse model and 4-nitroquinoline-1-oxide (4-NQO) oral cancer model.ResultsWe found that Curcumin decreased the expression of IC ligands such as PD-L1, PD-L2, and Galectin-9 in HNSCC, leading to regulation of epithelial-to-mesenchymal transition-associated tumor invasion. Curcumin also effectively restored the ability of CD8+ cytotoxic T cells to lyse cancer cells. To evaluate the effect of Curcumin on the TME further, the 4-NQO oral cancer model was used. Curcumin increased T-cell proliferation, tumor-infiltrating lymphocytes (TILs), and effector cytokines, and decreased the expression of PD-1, TIM-3, suppressive IC receptors and their ligands (PD-L1, PD-L2, and Galectin-9) in the TME, implying reinvigoration of the exhausted CD8+ T cells. In addition, Curcumin inhibited expression of CD4+CD25+FoxP3+ Treg cells as well as PD-1 and TIM-3.ConclusionsThese results show that Curcumin reinvigorates defective T cells via multiple (PD-1 and TIM-3) and multi-level (IC receptors and its ligands) IC axis suppression, thus providing a rationale to combine Curcumin with conventional targeted therapy or ICB as a multi-faceted approach for treating patients with HNSCC.  相似文献   

6.
Programmed death-1 (PD-1), an inhibitory receptor up-regulated on activated T cells, has been shown to play a critical immunoregulatory role in peripheral tolerance, but its role in alloimmune responses is poorly understood. Using a novel alloreactive TCR-transgenic model system, we examined the functions of this pathway in the regulation of alloreactive CD4+ T cell responses in vivo. PD-L1, but not PD-1 or PD-L2, blockade accelerated MHC class II-mismatched skin graft (bm12 (I-Abm12) into B6 (I-Ab)) rejection in a similar manner to CTLA-4 blockade. In an adoptive transfer model system using the recently described anti-bm12 (ABM) TCR-transgenic mice directly reactive to I-Abm12, PD-1 and PD-L1 blockade enhanced T cell proliferation early in the immune response. In contrast, at a later time point preceding accelerated allograft rejection, only PD-L1 blockade enhanced T cell proliferation. In addition, PD-L1 blockade enhanced alloreactive Th1 cell differentiation. Apoptosis of alloantigen-specific T cells was inhibited significantly by PD-L1 but not PD-1 blockade, indicating that PD-1 may not be the receptor for the apoptotic effect of the PD-L1-signaling pathway. Interestingly, the effect of PD-L1 blockade was dependent on the presence of CD4+ CD25+ regulatory T cells in vivo. These data demonstrate a critical role for the PD-1 pathway, particularly PD-1/PD-L1 interactions, in the regulation of alloimmune responses in vivo.  相似文献   

7.
Programmed cell death-1 (PD1) is an inhibitory receptor expressed on the activated T and B cells. Binding of PD1 to its ligands, PD-L1 and PD-L2 has led to deliver an inhibitory signal into the activated T cells. Recently, blocking PD1/PD-L1 pathway has emerged as a new treatment paradigm across a broad spectrum of malignancies. Remarkable clinical responses of monoclonal antibodies specific for PD-1 or its ligands in patients with many different types of cancer, attracted several pharmaceutical companies and researchers to investigate the agents that block PD1/PD-L1 signal. The safety and efficacy of the agents are needed to examine in the preclinical studies. In this study, we optimized a facile and cost-effective protocol for in vitro generation and functional analysis of human PD1/PD-L1 pathway. Activation of CD8?+?CD279?+?T cell was performed by anti-CD3 and D28 antibodies and the recombinant PD-L1 was used for inactivation of T cells through PD1/PD-L1 pathway. In this protocol, T-cell cytokine production (IL-2 and IFN-γ) and proliferation assay confirmed that a measurable PD1/PD-L1 signal was generated. We expected that in vitro PD1/PD-L1 signal that has been optimized in this study will serve as a valuable protocol for preclinical studies involving PD1/PD-L1 pathway.  相似文献   

8.
Positive selection during thymocyte development is driven by the affinity and avidity of the TCR for MHC-peptide complexes expressed in the thymus. In this study, we show that programmed death-1 (PD-1), a member of the B7/CD28 family of costimulatory receptors, inhibits TCR-mediated positive selection through PD-1 ligand 1 (PD-L1):PD-1 interactions. Transgenic mice that constitutively overexpress PD-1 on CD4+CD8+ thymocytes display defects in positive selection in vivo. Using an in vitro model system, we find that PD-1 is up-regulated following TCR engagement on CD4+CD8+ murine thymocytes. Coligation of TCR and PD-1 on CD4+CD8+ thymocytes with a novel PD-1 agonistic mAb inhibits the activation of ERK and up-regulation of bcl-2, both of which are downstream mediators essential for positive selection. Inhibitory signals through PD-1 can overcome the ability of positive costimulators, such as CD2 and CD28, to facilitate positive selection. Finally, defects in positive selection that result from PD-1 overexpression in thymocytes resolve upon elimination of PD-L1, but not PD-1 ligand 2, expression. PD-L1-deficient mice have increased numbers of CD4+CD8+ and CD4+ thymocytes, indicating that PD-L1 is involved in normal thymic selection. These data demonstrate that PD-1:PD-L1 interactions are critical to positive selection and play a role in shaping the T cell repertoire.  相似文献   

9.
Recent evidence demonstrates that HIV-1 infection leads to the attenuation of cellular immune responses, which has been correlated with the increased expression of programmed death (PD)-1 on virus-specific CD8(+) T cells. PD-1 is induced upon T cell activation, and its prolonged expression facilitates CD8(+) T cell inhibitory signals when bound to its B7 family ligands, PD-ligand (L)1/2, which are expressed on APCs. Importantly, early reports demonstrated that blockade of the PD-1/PD-L interaction by Abs may help to counter the development of immune exhaustion driven by HIV viral persistence. To better understand the regulation of the PD-1 pathway during HIV infection, we examined the ability of the virus to induce PD-L expression on macrophages and dendritic cells. We found a direct relationship between the infection of APCs and the expression of PD-L1 in which virus-mediated upregulation induced a state of nonresponsiveness in uninfected HIV-specific T cells. Furthermore, this exhaustion phenotype was revitalized by the blockade of PD-L1, after which T cells regained their capacity for proliferation and the secretion of proinflammatory cytokines IFN-γ, IL-2, and IL-12 upon restimulation. In addition, we identify a critical role for the PI3K/serine-threonine kinase signaling pathway in PD-L1 upregulation of APCs by HIV, because inhibition of these intracellular signal transducer enzymes significantly reduced PD-L1 induction by infection. These data identify a novel mechanism by which HIV exploits the immunosuppressive PD-1 pathway and suggest a new role for virus-infected cells in the local corruption of immune responses required for viral suppression.  相似文献   

10.
Programmed death-1 ligand (PD-L)1 and PD-L2 are ligands for programmed death-1 (PD-1), a member of the CD28/CTLA4 family expressed on activated lymphoid cells. PD-1 contains an immunoreceptor tyrosine-based inhibitory motif and mice deficient in PD-1 develop autoimmune disorders suggesting a defect in peripheral tolerance. Human PD-L1 and PD-L2 are expressed on immature dendritic cells (iDC) and mature dendritic cells (mDC), IFN-gamma-treated monocytes, and follicular dendritic cells. Using mAbs, we show that blockade of PD-L2 on dendritic cells results in enhanced T cell proliferation and cytokine production, including that of IFN-gamma and IL-10, while blockade of PD-L1 results in similar, more modest, effects. Blockade of both PD-L1 and PD-L2 showed an additive effect. Both whole mAb and Fab enhanced T cell activation, showing that PD-L1 and PD-L2 function to inhibit T cell activation. Enhancement of T cell activation was most pronounced with weak APC, such as iDCs and IL-10-pretreated mDCs, and less pronounced with strong APC such as mDCs. These data are consistent with the hypothesis that iDC have a balance of stimulatory vs inhibitory molecules that favors inhibition, and indicate that PD-L1 and PD-L2 contribute to the poor stimulatory capacity of iDC. PD-L1 expression differs from PD-L2 in that PD-L1 is expressed on activated T cells, placental trophoblasts, myocardial endothelium, and cortical thymic epithelial cells. In contrast, PD-L2 is expressed on placental endothelium and medullary thymic epithelial cells. PD-L1 is also highly expressed on most carcinomas but minimally expressed on adjacent normal tissue suggesting a role in attenuating antitumor immune responses.  相似文献   

11.
To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL) is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC). Several signalling pathways (calcium, phosphorylation of ERK and Akt) and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture. The global result is an anergy that is quite distinct from clonal anergy induced in vitro, and closer to adaptive tolerance in mice. PD-1 (programmed death -1) is systematically expressed by TIL and may contribute to their anergy by its mere expression, and not only when it interacts with its ligands PD-L1 or PD-L2, which are not expressed by every tumor. Indeed, the TCR-induced calcium and ERK responses were reduced in peripheral blood T cells transfected with PD-1. Inhibition by sodium stibogluconate of the SHP-1 and SHP-2 phosphatases that associate with several inhibitory receptors including PD-1, relieves part of the anergy apparent in TIL or in PD-1-transfected T cells. This work highlights some of the molecular modifications contributing to functional defects of human TIL.  相似文献   

12.
Tzeng HT  Tsai HF  Liao HJ  Lin YJ  Chen L  Chen PJ  Hsu PN 《PloS one》2012,7(6):e39179
Persistent hepatitis B viral (HBV) infection results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Recent studies in animal models of viral infection indicate that the interaction between the inhibitory receptor, programmed death (PD)-1, on lymphocytes and its ligand (PD-L1) play a critical role in T-cell exhaustion by inducing T-cell inactivation. High PD-1 expression levels by peripheral T-lymphocytes and the possibility of improving T-cell function by blocking PD-1-mediated signaling confirm the importance of this inhibitory pathway in inducing T-cell exhaustion. We studied T-cell exhaustion and the effects of PD-1 and PD-L1 blockade on intrahepatic infiltrating T-cells in our recently developed mouse model of HBV persistence. In this mouse animal model, we demonstrated that there were increased intrahepatic PD-1-expressing CD8+ and CD4+ T cells in mice with HBV persistence, but PD-1 upregulation was resolved in mice which had cleared HBV. The Intrahepatic CD8+ T-cells expressed higher levels of PD-1 and lower levels of CD127 in mice with HBV persistence. Blockade of PD-1/PD-L1 interactions increased HBcAg-specific interferon (IFN)-γ production in intrahepatic T lymphocytes. Furthermore, blocking the interaction of PD-1 with PD-L1 by an anti-PD-1 monoclonal antibody (mAb) reversed the exhausted phenotype in intrahepatic T lymphocytes and viral persistence to clearance of HBV in vivo. Our results indicated that PD-1 blockage reverses immune dysfunction and viral persistence of HBV infection in a mouse animal model, suggesting that the anti-PD-1 mAb might be a good therapeutic candidate for chronic HBV infection.  相似文献   

13.
Recent studies show that cancer cells are sometimes able to evade the host immunity in the tumor microenvironment. Cancer cells can express high levels of immune inhibitory signaling proteins. One of the most critical checkpoint pathways in this system is a tumor-induced immune suppression (immune checkpoint) mediated by the programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1). PD-1 is highly expressed by activated T cells, B cells, dendritic cells, and natural killer cells, whereas PD-L1 is expressed on several types of tumor cells. Many studies have shown that blocking the interaction between PD-1 and PD-L1 enhances the T-cell response and mediates antitumor activity. In this review, we highlight a brief overview of the molecular and biochemical events that are regulated by the PD-1 and PD-L1 interaction in various cancers.  相似文献   

14.
Protective immunity against Mycobacterium tuberculosis requires the generation of cell-mediated immunity. We investigated the expression and role of programmed death 1 (PD-1) and its ligands, molecules known to modulate T cell activation, in the regulation of IFN-gamma production and lytic degranulation during human tuberculosis. We demonstrated that specific Ag-stimulation increased CD3+PD-1+ lymphocytes in peripheral blood and pleural fluid from tuberculosis patients in direct correlation with IFN-gamma production from these individuals. Moreover, M. tuberculosis-induced IFN-gamma participated in the up-regulation of PD-1 expression. Blockage of PD-1 or PD-1 and its ligands (PD-Ls: PD-L1, PD-L2) enhanced the specific degranulation of CD8+ T cells and the percentage of specific IFN-gamma-producing lymphocytes against the pathogen, demonstrating that the PD-1:PD-Ls pathway inhibits T cell effector functions during active M. tuberculosis infection. Furthermore, the simultaneous blockage of the inhibitory receptor PD-1 together with the activation of the costimulatory protein signaling lymphocytic activation molecule led to the promotion of protective IFN-gamma responses to M. tuberculosis, even in patients with weak cell-mediated immunity against the bacteria. Together, we demonstrated that PD-1 interferes with T cell effector functions against M. tuberculosis, suggesting that PD-1 has a key regulatory role during the immune response of the host to the pathogen.  相似文献   

15.
16.
Programmed death-1 targeting can promote allograft survival   总被引:19,自引:0,他引:19  
The recently identified CD28 homolog and costimulatory molecule programmed death-1 (PD-1) and its ligands, PD-L1 and PD-L2, which are homologs of B7, constitute an inhibitory regulatory pathway of potential therapeutic use in immune-mediated diseases. We examined the expression and functions of PD-1 and its ligands in experimental cardiac allograft rejection. In initial studies, we found that most normal tissues and cardiac isografts had minimal expression of PD-1, PD-L1, or PD-L2, but intragraft induction of all three molecules occurred during development of cardiac allograft rejection. Intragraft expression of all three genes was maintained despite therapy with cyclosporin A or rapamycin, but was prevented in the early posttransplant period by costimulation blockade using CD154 or anti-inducible costimulator mAb. We prepared PD-L1.Ig and PD-L2.Ig fusion proteins and showed that each bound to activated PD-1(+) T cells and inhibited T cell functions in vitro, thereby allowing us to test the effects of PD-1 targeting on allograft survival in vivo. Neither agent alone modulated allograft rejection in wild-type recipients. However, use of PD-L1.Ig administration in CD28(-/-) recipients, or in conjunction with immunosuppression in fully MHC-disparate combinations, markedly prolonged cardiac allograft survival, in some cases causing permanent engraftment, and was accompanied by reduced intragraft expression of IFN-gamma and IFN-gamma-induced chemokines. PD-L1.Ig use also prevented development of transplant arteriosclerosis post-CD154 mAb therapy. These data show that when combined with limited immunosuppression, or in the context of submaximal TCR or costimulatory signals, targeting of PD-1 can block allograft rejection and modulate T and B cell-dependent pathologic immune responses in vivo.  相似文献   

17.
Programmed death receptor ligand 1 (PD-L1, also called B7-H1) is a recently described B7 family member. In contrast to B7-1 and B7-2, PD-L1 does not interact with either CD28 or CTLA-4. To date, one specific receptor has been identified that can be ligated by PD-L1. This receptor, programmed death receptor 1 (PD-1), has been shown to negatively regulate T-cell receptor (TCR) signaling. Upon ligating its receptor, PD-L1 has been reported to decrease TCR-mediated proliferation and cytokine production. PD-1 gene–deficient mice developed autoimmune diseases, which early led to the hypothesis of PD-L1 regulating peripheral tolerance. In contrast to normal tissues, which show minimal surface expression of PD-L1 protein, PD-L1 expression was found to be abundant on many murine and human cancers and could be further up-regulated upon IFN- stimulation. Thus, PD-L1 might play an important role in tumor immune evasion. This review discusses the currently available data concerning negative T-cell regulation via PD-1, the blockade of PD-L1/PD-1 interactions, and the implications for adoptive T-cell therapies.  相似文献   

18.
The programmed death-1 (PD-1)/programmed death-1 ligand 1 (PD-L1) pathway regulates both stimulatory and inhibitory signals. In some conditions, PD-1/PD-L1 inhibits T and B cell activation, induces anergy, and reduces cytotoxicity in CD8(+) T cells. In other conditions, PD-l/PD-L1 has costimulatory effects on T cells. We recently showed that induction of suppressive CD8(+)Foxp3(+) T cells by immune tolerance of lupus-prone (New Zealand black × New Zealand white)F(1) (BWF(1)) mice with the anti-DNA Ig-based peptide pConsensus (pCons) is associated with significantly reduced PD-1 expression on those cells. In this study, we tested directly the role of PD-1 by administering in vivo neutralizing Ab to PD-1 to premorbid BWF(1) and healthy control mice. Anti-PD-1-treated mice were protected from the onset of lupus nephritis for 10 wk, with significantly improved survival. Although the numbers of T cells declined in aging control mice, they were maintained in anti-PD-1-treated mice, including CD8(+)Foxp3(+) T cells that suppressed syngeneic CD4(+)CD25(-) T cell proliferation and IFN-γ production, reduced production of IgG and anti-dsDNA IgG, induced apoptosis in syngeneic B cells, and increased IL-2 and TGF-β production. The administration of anti-PD-1 Ab to BWF(1) mice after induction of tolerance with pCons abrogated tolerance; mice developed autoantibodies and nephritis at the same time as control mice, being unable to induce CD8(+)Foxp3(+) T suppressor cells. These data suggest that tightly regulated PD-1 expression is essential for the maintenance of immune tolerance mediated by those CD8(+)Foxp3(+) T cells that suppress both T(h) cells and pathogenic B cells. PD-1 regulation could represent a target to preserve tolerance and prevent autoimmunity.  相似文献   

19.
The regulation of T cell response depends on co-inhibitory pathways that serve to control immune-mediated tissue damage and resolve inflammation by modulating the magnitude and duration of immune response. In this process, the axis of T-cell-expressed programmed death-1 (PD-1) and its ligands (PD-L1 and PD-L2) play a key role. While the PD-1/PD-L pathway has received considerable attention for its role in the maintenance of T cell exhaustion in cancer and chronic infection, the PD-1/PD-L pathway also plays diverse roles in regulating host immunity beyond T cell exhaustion. In this review, we will discuss emerging concepts in co-stimulatory functions of PD-1/PD-L pathway on T cell- and B cell response and explore the potential underlying mechanisms. In addition, based on the elevated expression of PD-1 and its ligands in local inflamed tissues, we further discussed the role of PD-1/PD-L pathway in autoimmune diseases.  相似文献   

20.
The programmed death (PD)-1 molecule and its ligands (PD-L1 and PD-L2), negative regulatory members of the B7 family, play an important role in peripheral tolerance. Previous studies have demonstrated that PD-1 is up-regulated on T cells following TCR-mediated activation; however, little is known regarding PD-1 and Ag-independent, cytokine-induced T cell activation. The common gamma-chain (gamma c) cytokines IL-2, IL-7, IL-15, and IL-21, which play an important role in peripheral T cell expansion and survival, were found to up-regulate PD-1 and, with the exception of IL-21, PD-L1 on purified T cells in vitro. This effect was most prominent on memory T cells. Furthermore, these cytokines induced, indirectly, the expression of PD-L1 and PD-L2 on monocytes/macrophages in PBMC. The in vivo correlate of these observations was confirmed on PBMC isolated from HIV-infected individuals receiving IL-2 immunotherapy. Exposure of gamma c cytokine pretreated T cells to PD-1 ligand-IgG had no effect on STAT5 activation, T cell proliferation, or survival driven by gamma c cytokines. However, PD-1 ligand-IgG dramatically inhibited anti-CD3/CD28-driven proliferation and Lck activation. Furthermore, following restimulation with anti-CD3/CD28, cytokine secretion by both gamma c cytokine and anti-CD3/CD28 pretreated T cells was suppressed. These data suggest that gamma c cytokine-induced PD-1 does not interfere with cytokine-driven peripheral T cell expansion/survival, but may act to suppress certain effector functions of cytokine-stimulated cells upon TCR engagement, thereby minimizing immune-mediated damage to the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号