首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2∆, nod1∆ has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis.  相似文献   

2.
The fission yeast Schizosaccharomyces pombe divides symmetrically using a medial F-actin– based contractile ring to produce equal-sized daughter cells. Mutants defective in two previously described genes, mid1 and pom1, frequently divide asymmetrically. Here we present the identification of three new temperature-sensitive mutants defective in localization of the division plane. All three mutants have mutations in the polo kinase gene, plo1, and show defects very similar to those of mid1 mutants in both the placement and organization of the medial ring. In both cases, ring formation is frequently initiated near the cell poles, indicating that Mid1p and Plo1p function in recruiting medial ring components to the cell center. It has been reported previously that during mitosis Mid1p becomes hyperphosphorylated and relocates from the nucleus to a medial ring. Here we show that Mid1p first forms a diffuse cortical band during spindle formation and then coalesces into a ring before anaphase. Plo1p is required for Mid1p to exit the nucleus and form a ring, and Pom1p is required for proper placement of the Mid1p ring. Upon overexpression of Plo1p, Mid1p exits the nucleus prematurely and displays a reduced mobility on gels similar to that of the hyperphosphorylated form observed previously in mitotic cells. Genetic and two-hybrid analyses suggest that Plo1p and Mid1p act in a common pathway distinct from that involving Pom1p. Plo1p localizes to the spindle pole bodies and spindles of mitotic cells and also to the medial ring at the time of its formation. Taken together, the data indicate that Plo1p plays a role in the positioning of division sites by regulating Mid1p. Given its previously known functions in mitosis and the timing of cytokinesis, Plo1p is thus implicated as a key molecule in the spatial and temporal coordination of cytokinesis with mitosis.  相似文献   

3.
The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3+ and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation.  相似文献   

4.
Correct positioning of the cell division machinery is crucial for genomic stability and cell fate determination. The fission yeast Schizosaccharomyces pombe, like animal cells, divides using an actomyosin ring and is an attractive model to study eukaryotic cytokinesis. In S. pombe, positioning of the actomyosin ring depends on the anillin-related protein Mid1p. Mid1p arrives first at the medial cortex and recruits actomyosin ring components to node-like structures, although how this is achieved is unknown. Here we show that the IQGAP-related protein Rng2p, an essential component of the actomyosin ring, is a key element downstream of Mid1p. Rng2p physically interacts with Mid1p and is required for the organization of other actomyosin ring components into cortical nodes. Failure of localization of Rng2p to the nodes prevents medial retention of Mid1p and leads to actomyosin ring assembly in a node-independent manner at nonmedial locations. We conclude that Mid1p recruits Rng2p to cortical nodes at the division site and that Rng2p, in turn, recruits other components of the actomyosin ring to cortical nodes, thereby ensuring correct placement of the division site.  相似文献   

5.
Septins are filament-forming proteins with a conserved role in cytokinesis. In the fission yeast Schizosaccharomyces pombe, septin rings appear to be involved primarily in cell-cell separation, a late stage in cytokinesis. Here, we identified a protein Mid2p on the basis of its sequence similarity to S. pombe Mid1p, Saccharomyces cerevisiae Bud4p, and Candida albicans Int1p. Like septin mutants, mid2delta mutants had delays in cell-cell separation. mid2delta mutants were defective in septin organization but not contractile ring closure or septum formation. In wild-type cells, septins assembled first during mitosis in a single ring and during septation developed into double rings that did not contract. In mid2delta cells, septins initially assembled in a single ring but during septation appeared in the cleavage furrow, forming a washer or disc structure. FRAP studies showed that septins are stable in wild-type cells but exchange 30-fold more rapidly in mid2delta cells. Mid2p colocalized with septins and required septins for its localization. A COOH-terminal pleckstrin homology domain of Mid2p was required for its localization and function. No genetic interactions were found between mid2 and the related gene mid1. Thus, these studies identify a new factor responsible for the proper stability and function of septins during cytokinesis.  相似文献   

6.
In eukaryotes, cytokinesis generally involves an actomyosin ring, the contraction of which promotes daughter cell segregation. Assembly of the contractile ring is tightly controlled in space and time. In the fission yeast, contractile ring components are first organized by the anillin-like protein Mid1 into medial cortical nodes. These nodes then coalesce laterally into a functional contractile ring. Although Mid1 is present at the medial cortex throughout G2, recruitment of contractile ring components to nodes starts only at mitotic onset, indicating that this event is cell-cycle regulated. Polo kinases are key temporal coordinators of mitosis and cytokinesis, and the Polo-like kinase Plo1 is known to activate Mid1 nuclear export at mitotic onset, coupling division plane specification to nuclear position. Here we provide evidence that Plo1 also triggers the recruitment of contractile ring components into medial cortical nodes. Plo1 binds at least two independent sites on Mid1, including a consensus site phosphorylated by Cdc2. Plo1 phosphorylates several residues within the first 100 amino acids of Mid1, which directly interact with the IQGAP Rng2, and influences the timing of myosin II recruitment. Plo1 thereby facilitates contractile ring assembly at mitotic onset.  相似文献   

7.
The mitotic microtubule array plays two primary roles in cell division. It acts as a scaffold for the congression and separation of chromosomes, and it specifies and maintains the contractile-ring position. The current model for initiation of Drosophila and mammalian cytokinesis [1-5] postulates that equatorial localization of a RhoGEF (Pbl/Ect2) by a microtubule-associated motor protein complex creates a band of activated RhoA [6], which subsequently recruits contractile-ring components such as actin, myosin, and Anillin [1-3]. Equatorial microtubules are essential for continued constriction, but how they interact with the contractile apparatus is unknown. Here, we report the first direct molecular link between the microtubule spindle and the actomyosin contractile ring. We find that the spindle-associated component, RacGAP50C, which specifies the site of cleavage [1-5], interacts directly with Anillin, an actin and myosin binding protein found in the contractile ring [7-10]. Both proteins depend on this interaction for their localization. In the absence of Anillin, the spindle-associated RacGAP loses its association with the equatorial cortex, and cytokinesis fails. These results account for the long-observed dependence of cytokinesis on the continual presence of microtubules at the cortex.  相似文献   

8.
Cdc42 GTPase is required for polarization in eukaryotic cells, but its spatial regulation is poorly understood. In Schizosaccharomyces pombe, Cdc42p is activated by Scd1p and Gef1p, two guanine-nucleotide exchange factors. Two-hybrid screening identified Hob3p as a Gef1p binding partner. Hob3p is a BAR domain-containing protein ortholog of human Bin3. Hob3p also interacts directly with Cdc42p independently of Gef1p. Hob3p, Cdc42p and Gef1p form a complex, and Hob3p facilitates Gef1p-Cdc42p interaction and activation. Hob3p forms a ring in the division area, similar to that of Gef1p. This localization requires actin polymerization and Cdc15p but is independent of the septation initiation network. Hob3p is required for the concentration of Cdc42p to the division area. The actomyosin ring contraction is slower in hob3Delta than in wild-type cells, and this contributes to its cytokinesis defect. Moreover, this report extends previous evidence that human Bin3 suppresses the cytokinesis phenotype of hob3Delta cells, showing that Bin3 can partially recover the GTP-Cdc42p level and its localization. These results suggest that Hob3p is required to recruit and activate Cdc42p at the cell division site and that this function might be conserved in other eukaryotes.  相似文献   

9.
Most cells enter mitosis once they have reached a defined size. In the fission yeast Schizosaccharomyces pombe, mitotic entry is orchestrated by a geometry-sensing mechanism that involves the Cdk1/Cdc2-inhibiting Wee1 kinase. The factors upstream of Wee1 gather together in interphase to form a characteristic medial and cortical belt of nodes. Nodes are also considered to be precursors of the cytokinesis contractile actomyosin ring (CAR). Here we describe a new component of the interphase nodes and cytokinesis rings, which we named Nod1. Consistent with its role in cell size control at division, nod1Δ cells were elongated and epistatic with regulators of Wee1. Through biochemical and localisation studies, we placed Nod1 in a complex with the Rho-guanine nucleotide exchange factor Gef2. Nod1 and Gef2 mutually recruited each other in nodes and Nod1 also assembles Gef2 in rings. Like gef2Δ, nod1Δ cells showed a mild displacement of their division plane and this phenotype was severely exacerbated when the parallel Polo kinase pathway was also compromised. We conclude that Nod1 specifies the division site by localising Gef2 to the mitotic cell middle. Previous work showed that Gef2 in turn anchors factors that control the spatio-temporal recruitment of the actin nucleation machinery. It is believed that the actin filaments originated from the nodes pull nodes together into a single contractile ring. Surprisingly however, we found that node proteins could form pre-ring helical filaments in a cdc12-112 mutant in which nucleation of the actin ring is impaired. Furthermore, the deletion of either nod1 or gef2 created an un-expected situation where different ring components were recruited sequentially rather than simultaneously. At later stages of cytokinesis, these various rings appeared inter-fitted rather than merged. This study brings a new slant to the understanding of CAR assembly and function.  相似文献   

10.
Cell division after mitosis is mediated by ingression of an actomyosin-based contractile ring. The active, GTP-bound form of the small GTPase RhoA is a key regulator of contractile-ring formation. RhoA concentrates at the equatorial cell cortex at the site of the nascent cleavage furrow. During cytokinesis, RhoA is activated by its RhoGEF, ECT2. Once activated, RhoA promotes nucleation, elongation, and sliding of actin filaments through the coordinated activation of both formin proteins and myosin II motors (reviewed in [1, 2]). Anillin is a 124 kDa protein that is highly concentrated in the cleavage furrow in numerous animal cells in a pattern that resembles that of RhoA [3-7]. Although anillin contains conserved N-terminal actin and myosin binding domains and a PH domain at the C terminus, its mechanism of action during cytokinesis remains unclear. Here, we show that human anillin contains a conserved C-terminal domain that is essential for its function and localization. This domain shares homology with the RhoA binding protein Rhotekin and directly interacts with RhoA. Further, anillin is required to maintain active myosin in the equatorial plane during cytokinesis, suggesting it functions as a scaffold protein to link RhoA with the ring components actin and myosin. Although furrows can form and initiate ingression in the absence of anillin, furrows cannot form in anillin-depleted cells in which the central spindle is also disrupted, revealing that anillin can also act at an early stage of cytokinesis.  相似文献   

11.
Rho GTPases, activated by Rho guanine nucleotide exchange factors (GEFs), are conserved molecular switches for signal transductions that regulate diverse cellular processes, including cell polarization and cytokinesis. The fission yeast Schizosaccharomyces pombe has six Rho GTPases (Cdc42 and Rho1–Rho5) and seven Rho GEFs (Scd1, Rgf1–Rgf3, and Gef1–Gef3). The GEFs for Rho2–Rho5 have not been unequivocally assigned. In particular, Gef3, the smallest Rho GEF, was barely studied. Here we show that Gef3 colocalizes with septins at the cell equator. Gef3 physically interacts with septins and anillin Mid2 and depends on them to localize. Gef3 coprecipitates with GDP-bound Rho4 in vitro and accelerates nucleotide exchange of Rho4, suggesting that Gef3 is a GEF for Rho4. Consistently, Gef3 and Rho4 are in the same genetic pathways to regulate septum formation and/or cell separation. In gef3∆ cells, the localizations of two potential Rho4 effectors—glucanases Eng1 and Agn1—are abnormal, and active Rho4 level is reduced, indicating that Gef3 is involved in Rho4 activation in vivo. Moreover, overexpression of active Rho4 or Eng1 rescues the septation defects of mutants containing gef3∆. Together our data support that Gef3 interacts with the septin complex and activates Rho4 GTPase as a Rho GEF for septation in fission yeast.  相似文献   

12.
We investigated the assembly of cortical nodes that generate the cytokinetic contractile ring in fission yeast. Observations of cells expressing fluorescent fusion proteins revealed two types of interphase nodes. Type 1 nodes containing kinase Cdr1p, kinase Cdr2p, and anillin Mid1p form in the cortex around the nucleus early in G2. Type 2 nodes with protein Blt1p, guanosine triphosphate exchange factor Gef2p, and kinesin Klp8p emerge from contractile ring remnants. Quantitative measurements and computer simulations showed that these two types of nodes come together by a diffuse-and-capture mechanism: type 2 nodes diffuse to the equator and are captured by stationary type 1 nodes. During mitosis, cytokinetic nodes with Mid1p and all of the type 2 node markers incorporate into the contractile ring, whereas type 1 nodes with Cdr1p and Cdr2p follow the separating nuclei before dispersing into the cytoplasm, dependent on septation initiation network signaling. The two types of interphase nodes follow parallel branches of the pathway to prepare nodes for cytokinesis.  相似文献   

13.
Schizosaccharomyces pombe Rho GTPases regulate actin cytoskeleton organization and cell integrity. We studied the fission yeast gene SPBC4F6.12 based on its ability to suppress the thermosensitivity of cdc42-1625 mutant strain. This gene, named pxl1(+), encodes a protein with three LIM domains that is similar to paxillin. Pxl1 does not interact with Cdc42 but it interacts with Rho1, and it negatively regulates this GTPase. Fission yeast Pxl1 forms a contractile ring in the cell division region and deletion of pxl1(+) causes a delay in cell-cell separation, suggesting that it has a function in cytokinesis. Pxl1 N-terminal region is required and sufficient for its localization to the medial ring, whereas the LIM domains are necessary for its function. Pxl1 localization requires actin polymerization and the actomyosin ring, but it is independent of the septation initiation network (SIN) function. Moreover, Pxl1 colocalizes and interacts with Myo2, and Cdc15, suggesting that it is part of the actomyosin ring. Here, we show that in cells lacking Pxl1, the myosin ring is not correctly assembled and that actomyosin ring contraction is delayed. Together, these data suggest that Pxl1 modulates Rho1 GTPase signaling and plays a role in the formation and contraction of the actomyosin ring during cytokinesis.  相似文献   

14.
Correct positioning of the cell-division plane is crucial for cell function in all organisms. The fission yeast Schizosaccharomyces pombe divides by utilizing an actomyosin-based contractile ring and is an attractive model for the study of cytokinesis. The metazoan anillin-related protein Mid1p stimulates medial assembly of the division septum by recruiting actomyosin-ring components to the medial cortex. Here, we describe an inhibitory mechanism, involving the cell-end-localized polarity determinants Tea1p, Tea4p/Wsh3p, and Pom1p (tip complex), which prevents division-septum assembly at the cell ends. While Mid1p and the tip complex are dispensable for cell viability, their simultaneous loss leads to lethality. The FER/CIP homology protein Cdc15p, which organizes the actomyosin ring and cell membranes during cytokinesis, is a candidate for regulation by the tip complex. Since dual regulation of division-site placement is also seen in nematodes, such regulation might be a general feature of eukaryotic cytokinesis.  相似文献   

15.
mid1 is required for the proper placement of the contractile actin ring for cytokinesis at a medial site overlying the nucleus. Here we find that mid1 protein (mid1p) shuttles between the nucleus and a cortical medial broad band during interphase and early mitosis. The position of this broad band, which overlies the nucleus, is linked to nuclear position even in cells with displaced or multiple nuclei. We identified and created mutations in an NLS and in two crm1-dependent NES sequences in mid1p. NES mutations caused mid1p accumulation in the nucleus and loss of function. An NLS mutations greatly reduced nuclear localization but did not perturb cytoplasmic localization or function. mid1p localization to the medial broad band was also not dependent on mid1p PH domain or microtubule and actin cytoskeletons. Overexpression of mid1p produced ectopic cell growth at this band during interphase and abnormal karmellae-like nuclear membrane structures. In plo1-1, mid1p formed a medial broad band but did not incorporate into a tight ring, suggesting that polo kinase plo1p is required for activation of mid1p function. Thus, the mid1p broad band defines a compartment at the medial cell surface, whose localization is linked to the position of the nucleus, and whose function may be to position the plane of cell division.  相似文献   

16.
Intrinsic spatial cues ensure the proper placement of the cell division plane. In the fission yeast Schizosaccharomyces pombe, the position of the nucleus helps to direct the medial positioning of contractile-ring assembly and subsequent cell division . An important factor in this process is mid1p (anillin-like protein), which is a peripheral-membrane protein that forms a broad cortical band of dots overlying the nucleus in interphase and recruits myosin in early mitosis . How mid1p localizes to this cortical band and tracks the nucleus is not clear, especially because its localization is independent of the cytoskeleton . Here, we used a combination of experimental and computational approaches to test mid1p localization mechanisms. We provide evidence that pom1p, a DYRK-family protein kinase that forms a concentration gradient emanating from the nongrowing cell end, inhibits mid1p. In pom1 mutants, mid1p is distributed over half of the cell, covering the nongrowing cell end. This abnormal distribution is established in a dynamic manner in interphase and leads to the formation of misplaced or multiple contractile rings. Our computational and experimental results support a model in which both positive cues from the medial nucleus and negative cues from the cell tips specify the position of the division plane.  相似文献   

17.
Cytokinesis.     
The actomyosin contractile-ring mechanism remains the paradigm for cytokinesis after 20 years of experimental testing. Recent evidence suggests that Ca2+ triggers the contraction and that cell-cycle kinases regulate the timing of cytokinesis. New work is required to identify the signals from the mitotic spindle that specify the position of the furrow.  相似文献   

18.
The response to cell surface stress in yeast is mediated by a set of five plasma membrane sensors. We here address the relation of intracellular localization of the sensors Wsc1, Wsc2, and Mid2 to their turnover and signaling function. Growth competition experiments indicate that Wsc2 plays an important role in addition to Wsc1 and Mid2. The two Wsc sensors appear at the bud neck during cytokinesis and employ different routes of endocytosis, which govern their turnover. Whereas Wsc1 uses a clathrin-dependent NPFDD signal, Wsc2 relies on a specific lysine residue (K495). In end3 and doa4 endocytosis mutants, both sensors accumulate at the plasma membrane, and a hypersensitivity to cell wall-specific drugs and to treatment with zymolyase is observed. A haploid strain in which endocytosis of the two sensors is specifically blocked displays a reduced fitness in growth competition experiments. If the Mid2 sensor is mobilized by the addition of an endocytosis signal, it mimics the dynamic distribution of the Wsc sensors, but is unable to complement the specific growth defects of a wsc1 deletion. These data suggest that sensor distribution is not the major determinant for its specificity.  相似文献   

19.
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof1 SH3 domain and counteracting its inhibitory effect.  相似文献   

20.
Large tumor suppressor 1 and 2 (Lats1/2) regulate centrosomal integrity, chromosome segregation and cytokinesis. As components of the centralspindlin complex, the kinesin-like protein CHO1 and its splicing variant MKLP1 colocalize with chromosome passenger proteins and GTPases and regulate the formation of the contractile ring and cytokinesis; however, the regulatory mechanisms of CHO1/MKLP1 remain elusive. Here, we show that Lats1/2 phosphorylate Ser716 in the F-actin-interacting region of CHO1, which is absent in MKLP1. Phosphorylated CHO1 localized to the centrosomes and midbody, and the actin polymerization factor LIM-kinase 1 (LIMK1) was identified as its binding partner. Overexpression of constitutively phosphorylated and non-phosphorylated CHO1 altered the mitotic localization and activation of LIMK1 at the centrosomes in HeLa cells, leading to the inhibition of cytokinesis through excessive phosphorylation of Cofilin and mislocalization of Ect2. These results suggest that Lats1/2 stringently control cytokinesis by regulating CHO1 phosphorylation and the mitotic activation of LIMK1 on centrosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号