共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells 总被引:11,自引:0,他引:11
Lizunov VA Matsumoto H Zimmerberg J Cushman SW Frolov VA 《The Journal of cell biology》2005,169(3):481-489
Glucose transport in adipose cells is regulated by changing the distribution of glucose transporter 4 (GLUT4) between the cell interior and the plasma membrane (PM). Insulin shifts this distribution by augmenting the rate of exocytosis of specialized GLUT4 vesicles. We applied time-lapse total internal reflection fluorescence microscopy to dissect intermediates of this GLUT4 translocation in rat adipose cells in primary culture. Without insulin, GLUT4 vesicles rapidly moved along a microtubule network covering the entire PM, periodically stopping, most often just briefly, by loosely tethering to the PM. Insulin halted this traffic by tightly tethering vesicles to the PM where they formed clusters and slowly fused to the PM. This slow release of GLUT4 determined the overall increase of the PM GLUT4. Thus, insulin initially recruits GLUT4 sequestered in mobile vesicles near the PM. It is likely that the primary mechanism of insulin action in GLUT4 translocation is to stimulate tethering and fusion of trafficking vesicles to specific fusion sites in the PM. 相似文献
2.
Ranalletta M Du XQ Seki Y Glenn AS Kruse M Fiallo A Estrada I Tsao TS Stenbit AE Katz EB Charron MJ 《American journal of physiology. Endocrinology and metabolism》2007,293(5):E1178-E1187
Expression of GLUT4 in fast-twitch skeletal muscle fibers of GLUT4 null mice (G4-MO) normalized glucose uptake in muscle and restored peripheral insulin sensitivity. GLUT4 null mice exhibit altered carbohydrate and lipid metabolism in liver and skeletal muscle. To test the hypothesis that increased glucose utilization by G4-MO muscle would normalize the changes seen in the GLUT4 null liver, serum metabolites and hepatic metabolism were compared in control, GLUT4 null, and G4-MO mice. The fed serum glucose and triglyceride levels of G4-MO mice were similar to those of control mice. In addition, the alternations in liver metabolism seen in GLUT4 nulls including increased GLUT2 expression and fatty acid synthesis accompanied by an increase in the oxidative arm of the pentose phosphate pathway were absent in G4-MO mice. The transgene used for GLUT4 restoration in muscle was specific for fast-twitch muscle fibers. The mitochondria hypertrophy/hyperplasia in all GLUT4 null skeletal muscles was absent in transgene-positive extensor digitorum longus muscle but present in transgene-negative soleus muscle of G4-MO mice. Results of this study suggest that the level of muscle GLUT4 expression influences mitochondrial biogenesis. These studies also demonstrate that the type and amount of substrate that muscle takes up and metabolizes, determined in part by GLUT4 expression levels, play a major role in directing hepatic carbohydrate and lipid metabolism. 相似文献
3.
Insulin stimulates membrane fusion and GLUT4 accumulation in clathrin coats on adipocyte plasma membranes 下载免费PDF全文
Huang S Lifshitz LM Jones C Bellve KD Standley C Fonseca S Corvera S Fogarty KE Czech MP 《Molecular and cellular biology》2007,27(9):3456-3469
Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by approximately 4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane. 相似文献
4.
A Bonen L A Megeney S C McCarthy J C McDermott M H Tan 《Biochemical and biophysical research communications》1992,187(2):685-691
Epinephrine opposes glucose transport in muscle. Therefore, we investigated the effects of epinephrine administration (25 micrograms/100g body weight) on glucose transport and glucose transporters in rat muscle. Ninety minutes after epinephrine injection 3-O-methyl glucose transport was reduced (approximately 47%) in perfused muscles of the rat hindlimb. Translocation of the insulin-regulatable glucose transporter (GLUT4) in the epinephrine-injected animals was confirmed by the marked increments in the GLUT-4 in the plasma membranes and their concomitant reduction in the intracellular membranes. We speculate a) that it is epinephrine which translocated GLUT4 via a cAMP-linked pathway, and b) that the intrinsic activity reductions are caused either by the glycation of the transporter by the persistent hyperglycemia and/or by epinephrine via the phosphorylation of the GLUT4 transporter protein in muscle. 相似文献
5.
Catherine A Heyward Trevor R Pettitt Sophie E Leney Gavin I Welsh Jeremy M Tavaré Michael JO Wakelam 《BMC cell biology》2008,9(1):25
Background
Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. 相似文献6.
7.
Jain SS Snook LA Glatz JF Luiken JJ Holloway GP Thurmond DC Bonen A 《FEBS letters》2012,586(16):2428-2435
Insulin-, and contraction-induced GLUT4 and fatty acid (FA) transporter translocation may share common trafficking mechanisms. Our objective was to examine the effects of partial Munc18c ablation on muscle glucose and FA transport, FA oxidation, GLUT4 and FA transporter (FAT/CD36, FABPpm, FATP1, FATP4) trafficking to the sarcolemma, and FAT/CD36 to mitochondria. In Munc18c(-/+) mice, insulin-stimulated glucose transport and GLUT4 sarcolemmal appearance were impaired, but were unaffected by contraction. Insulin- and contraction-stimulated FA transport, sarcolemmal FA transporter appearance, and contraction-mediated mitochondrial FAT/CD36 were increased normally in Munc18c(-/+) mice. Hence, Munc18c provides stimulus-specific regulation of GLUT4 trafficking, but not FA transporter trafficking. 相似文献
8.
Funaki M Benincasa K Randhawa PK 《Biochemical and biophysical research communications》2007,360(4):891-896
Insulin-stimulated GLUT4 recruitment to the plasma membrane is impaired in insulin resistance. We recently reported that a cell permeable phosphoinositide-binding peptide induces GLUT4 recruitment as potently as insulin, but does not activate GLUT4 to initiate glucose uptake. Here we investigated whether the peptide-induced GLUT4 recruitment is intact in insulin resistance. The expression levels of GLUT1 and GLUT4 were unaffected by chronically treating 3T3-L1 adipocytes with insulin. GLUT4 recruitment by acute insulin stimulation after chronic insulin treatment was significantly reduced, but was fully restored by the peptide treatment. However, subsequent acute insulin stimulation to activate GLUT4 failed to increase glucose uptake in peptide-pretreated cells. Insulin-stimulated GLUT1 recruitment was unaffected by the peptide pretreatment. These results suggest that the GLUT4 recruitment signal caused by the peptide is intact in insulin resistance, but GLUT4 activation that occurs subsequent to recruitment is not rescued by the peptide treatment. 相似文献
9.
Carvalho E Schellhorn SE Zabolotny JM Martin S Tozzo E Peroni OD Houseknecht KL Mundt A James DE Kahn BB 《The Journal of biological chemistry》2004,279(20):21598-21605
The majority of GLUT4 is sequestered in unique intracellular vesicles in the absence of insulin. Upon insulin stimulation GLUT4 vesicles translocate to, and fuse with, the plasma membrane. To determine the effect of GLUT4 content on the distribution and subcellular trafficking of GLUT4 and other vesicle proteins, adipocytes of adipose-specific, GLUT4-deficient (aP2-GLUT4-/-) mice and adipose-specific, GLUT4-overexpressing (aP2-GLUT4-Tg) mice were studied. GLUT4 amount was reduced by 80-95% in aP2-GLUT4-/- adipocytes and increased approximately 10-fold in aP2-GLUT4-Tg adipocytes compared with controls. Insulin-responsive aminopeptidase (IRAP) protein amount was decreased 35% in aP2-GLUT4-/- adipocytes and increased 45% in aP2-GLUT4-Tg adipocytes. VAMP2 protein was also decreased by 60% in aP2-GLUT4-/- adipocytes and increased 2-fold in aP2-GLUT4-Tg adipocytes. IRAP and VAMP2 mRNA levels were unaffected in aP2-GLUT4-Tg, suggesting that overexpression of GLUT4 affects IRAP and VAMP2 protein stability. The amount and subcellular distribution of syntaxin4, SNAP23, Munc-18c, and GLUT1 were unchanged in either aP2-GLUT4-/- or aP2-GLUT4-Tg adipocytes, but transferrin receptor was partially redistributed to the plasma membrane in aP2-GLUT4-Tg adipocytes. Immunogold electron microscopy revealed that overexpression of GLUT4 in adipocytes increased the number of GLUT4 molecules per vesicle nearly 2-fold and the number of GLUT4 and IRAP-containing vesicles per cell 3-fold. In addition, the proportion of cellular GLUT4 and IRAP at the plasma membrane in unstimulated aP2-GLUT4-Tg adipocytes was increased 4- and 2-fold, respectively, suggesting that sequestration of GLUT4 and IRAP is saturable. Our results show that GLUT4 overexpression or deficiency affects the amount of other GLUT4-vesicle proteins including IRAP and VAMP2 and that GLUT4 sequestration is saturable. 相似文献
10.
Shlomit Boguslavsky Tim Chiu Kevin P. Foley Cesar Osorio-Fuentealba Costin N. Antonescu K. Ulrich Bayer Philip J. Bilan Amira Klip 《Molecular biology of the cell》2012,23(20):4065-4078
GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding–deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells. 相似文献
11.
Overexpression of GLUT4 in mice causes up-regulation of UCP3 mRNA in skeletal muscle 总被引:2,自引:0,他引:2
Tsuboyama-Kasaoka N Tsunoda N Maruyama K Takahashi M Kim H Cooke DW Lane MD Ezaki O 《Biochemical and biophysical research communications》1999,258(1):187-193
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues. 相似文献
12.
Vanadium increases GLUT4 in diabetic rat skeletal muscle 总被引:10,自引:0,他引:10
The effect of vanadium in lowering blood glucose in diabetic animals is well established; however, the exact mechanism of action of vanadium still eludes us. There are several reports from in vitro studies indicating that vanadium increases enzyme activity in insulin signalling pathways, however these findings have not been duplicated in vivo. Glucose transporters (GLUT) have a major role to play in any glucoregulatory effects. Insulin dependent GLUT4 is a major glucose transporter present in skeletal muscle, adipocytes and heart. In the present study we found that the plasma glucose in streptozotocin (STZ) diabetic animals was restored to normal following treatment with a single dose of BMOV, an organic vanadium compound, given by oral gavage (0.6 mmol/kg), similar to the response with chronic BMOV treatment. The response to BMOV by oral gavage was rapid and the animals were normoglycemic within 24 h of treatment and still demonstrated a significant effect even after 72 h. Using a specific antibody against GLUT4 we found an overall reduction in the GLUT4 in the total membrane fraction in skeletal muscle of diabetic animals. However, with a single dose of BMOV the GLUT4 level was restored to normal. This is the first report that establishes a direct effect of vanadium on the regulation of GLUT4 expression in diabetic animals in vivo, and may at least partially explain the glucoregulatory effects of vanadium. 相似文献
13.
Ueda M Nishiumi S Nagayasu H Fukuda I Yoshida K Ashida H 《Biochemical and biophysical research communications》2008,377(1):286-290
In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal muscle of rats. EGCg significantly increased glucose uptake accompanying GLUT4 translocation in L6 myotubes at 1 nM. The translocation of GLUT4 was also observed both in skeletal muscle of mice and rats ex vivo and in insulin-resistant L6 myotubes. Wortmannin, an inhibitor of phosphatidylinositol 3′-kinase, inhibited both EGCg- and insulin-increased glucose uptakes, while genistein, an inhibitor of tyrosine kinase, failed to inhibit the EGCg-increased uptake. Therefore, EGCg may improve hyperglycemia by promoting GLUT4 translocation in skeletal muscle with partially different mechanism from insulin. 相似文献
14.
S Vahsen K Rakowski D Ledwig D Dietze-Schroeder J Swifka S Sasson J Eckel 《Hormones et métabolisme》2006,38(6):391-396
We have recently shown that 12(S)-hydroxyeicosatetraenoic acid plays a role in the organization of actin microfilaments in rat cardiomyocytes, and that inhibition of 12-lipoxygenase abrogates insulin-stimulated GLUT4 translocation in these cells. In the present study, we used mice that were null for the leukocyte 12/15-lipoxygenase to explore the implications of this enzyme for insulin action under IN VIVO conditions. Insulin induced a profound reduction in blood glucose in both control and knockout mice. However, significantly higher serum insulin levels were observed in these animals. GLUT4 expression in heart and skeletal muscle was unaffected in KO mice. Insulin-regulated serine phosphorylation of Akt and GSK3alpha and GSK3beta was unaltered in heart and skeletal muscle of knockout mice, suggesting unaltered insulin signaling. Fractionation of hind limb muscles showed that insulin had induced a prominent translocation of GLUT4 to skeletal muscle plasma membranes in control mice. However, this response was largely reduced in knockout animals. Our data show that the lack of leukocyte 12/15-lipoxygenase does not lead to the development of an insulin-resistant phenotype. However, perturbation of GLUT4 translocation in skeletal muscle of knockout mice may indicate latent insulin resistance, and supports our hypothesis that eicosanoids are involved in insulin-mediated regulation of muscle glucose transport. 相似文献
15.
The effects on membranes of pardaxin, an amphipathic polypeptide, purified from the gland secretion of the Red Sea Moses sole flatfish Pardachirus marmoratus are dose-dependent and range from formation of voltage-gated, cation-selective pores to lysis. We have now investigated the interactions of pardaxin with small unilamellar liposomes. Light scattering showed that pardaxin (10−7–10−9M) mediated the aggregation of liposomes composed of phosphatidylserine but not of phosphatidylcholine. Aggregation of phosphatidylserine vesicles was impaired by vesicle depolarization. Furthermore, pardaxin-mediated aggregation between fluorescent-labeled PS vesicles was accompanied by leakage of the vesicle contents, and not by fusogenic process within the aggregates. We suggest that pardaxin is a unique polypeptide, that induces vesicle aggregation and membrane destabilization, but not membrane fusion; the mechanism of the aggregation activity of pardaxin is related to its amphipathic properties. 相似文献
16.
Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. 总被引:6,自引:0,他引:6
J W Ryder Y Kawano D Galuska R Fahlman H Wallberg-Henriksson M J Charron J R Zierath 《FASEB journal》1999,13(15):2246-2256
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. 相似文献
17.
Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160 总被引:11,自引:0,他引:11 下载免费PDF全文
Insulin maintains whole body blood glucose homeostasis, in part, by regulating the amount of the GLUT4 glucose transporter on the cell surface of fat and muscle cells. Insulin induces the redistribution of GLUT4 from intracellular compartments to the plasma membrane, by stimulating a large increase in exocytosis and a smaller inhibition of endocytosis. A considerable amount is known about the molecular events of insulin signaling and the complex itinerary of GLUT4 trafficking, but less is known about how insulin signaling is transmitted to GLUT4 trafficking. Here, we show that the AS160 RabGAP, a substrate of Akt, is required for insulin stimulation of GLUT4 exocytosis. A dominant-inhibitory mutant of AS160 blocks insulin stimulation of exocytosis at a step before the fusion of GLUT4-containing vesicles with the plasma membrane. This mutant, however, does not block insulin-induced inhibition of GLUT4 endocytosis. These data support a model in which insulin signaling to the exocytosis machinery (AS160 dependent) is distinct from its signaling to the internalization machinery (AS160 independent). 相似文献
18.
19.