首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) are a class of short non-coding RNAs of approximately 22 nucleotides in length, which function by binding to the 3'' UTR sequences of their target mRNAs. It has been reported that dysregulated miRNAs play pivotal roles in numerous diseases, including cancers, such as gastric, breast, colorectal, ovarian, and other cancers. Recent research efforts have been devoted to translating these basic discoveries into clinical applications that could improve the therapeutic outcome in patients with cancer. Early studies have shown that miR-340 may act either as an oncogene or a tumor suppressor by targeting genes related to proliferation, apoptosis, and metastasis, as well as those associated with diagnosis, treatment, chemoresistance, and prognosis. miR-340 has been shown to have a role in other diseases, such as autoimmune diseases, acute stroke, and alcoholic steatohepatitis. Nevertheless, the roles of miR-340 in human malignancies are still unclear, and the associated mechanisms are complex, involving a variety of signaling pathways, such as Wnt/β-catenin and the JAK-STAT pathways. Herein, we review the crucial roles of miR-340 in human cancers through the analysis of the latest research studies, with the aim of clarifying miR-340 function in malignant disease diagnosis, treatment, and prognosis, and to propose further investigations.  相似文献   

2.
microRNAs(miRNAs)是一类内源性、非编码小分子RNAs(约22 nt),在基因表达调控中发挥关键作用。已有研究表明,miRNAs失调是造成多种人类疾病的原因,如癌症、病毒感染及自身免疫性疾病等。补充或抑制miRNAs功能与活性已成为多种疾病治疗的新策略,抗肿瘤miR-34 mimics、治疗HCV感染的anti-miR-122等基于miRNAs的治疗方案已进入临床试验。重点就miRNAs治疗在癌症及其他疾病中的最新研究进展进行综述,并对目前开发安全有效miRNAs治疗策略所面临的挑战进行分析。  相似文献   

3.
MicroRNAs (miRNAs) 是一类长度约为22 nt的内源性非编码小RNA. 它们在后生动物基因组中普遍存在,通过抑制靶基因mRNA的翻译或将其降解,在转录后水平调控基因的表达. 越来越多的证据表明,miRNAs在动物发育和人类疾病发生中发挥重要作用. miR-183基因簇在后口动物和原口动物中高度保守,编码miR-182、miR-96和miR-183. miR-183基因簇在动物感觉器官中特异性表达,对动物感觉器官的发育和功能至关重要. miR-183基因簇还与人类的肺癌、肝癌、乳腺癌、胰腺癌和黑色素瘤等多种癌症相关. miR-183基因簇在多种肿瘤细胞中异常表达,它们通过调控与肿瘤细胞分裂和死亡相关基因,而起到促进或抑制肿瘤发生的作用. 本文对miR-183基因簇miRNAs在动物感觉器官功能和发育及人类肿瘤发生中的作用进行论述.  相似文献   

4.
微RNA(microRNA,miRNA)是一类在分子进化中十分保守的非编码RNA,长度约22个核苷酸,一般情况下它在转录后水平抑制基因表达。miRNA在细胞增殖、分化、凋亡等诸多生理过程中发挥着重要作用。有些miRNA具有组织特异性表达,其中miR-206是目前发现的唯一在骨骼肌中特异表达的miRNA,它在调节骨骼肌发生过程中扮演重要角色。miR-206表达异常与一些肌肉相关疾病如肌肉营养不良、肌萎缩性侧索硬化症等有关。此外,在Texel羊中,myostatin基因的一个点突变就产生了一个miR-206和miR-1的靶点,抑制了myostain基因的表达,从而产生了双肌表型。因此,miR-206有可能成为治疗肌肉相关疾病和畜禽改良育种的重要候选分子。  相似文献   

5.
microRNAs是一类内源性表达的、长度约为22个核苷酸的非蛋白编码的单链RNA分子,是重要的转录后基因表达调控因子。在多种生理和病理过程中发挥重要作用,到目前为止,在动植物以及病毒中已经发现有24521个miRNA分子,miR-378是其中的一种,miR-378通过多种机制与众多疾病的发生发展密切相关。miR-378在不同肿瘤组织中起到不同作用,在胃癌,肝癌,结直肠癌等肿瘤中起到抑癌基因的作用,在白血病,胰腺癌,卵巢癌等肿瘤中起到癌基因的作用。在心血管方面,miR-378可以通过多种机制起到保护血管,延缓心血管疾病的发展。在骨代谢方面,miR-378可通过不同机制抑制或促进成骨细胞的分化。本文就其与肿瘤、心血管、骨代谢以及其他方面的研究进行介绍,为这些疾病的治疗和预防提供一种新的思路。  相似文献   

6.
7.
陈良榉  杨明  陈艳  孙华钦  许文明 《遗传》2015,37(2):121-127
微小RNA(MicroRNA, miRNA)是长度为22个核苷酸的小片段非编码RNA,作为RNA干扰的参与者之一,其通过在转录后水平调节各种基因的表达,进而对细胞的生命活动产生广泛影响。miR-15b是miR-15/16家族一员,是一类在机体各系统、特别是血管内皮系统广泛表达的微小RNA,主要影响细胞的增殖、凋亡、侵袭、成管等行为。文章主要对miR-15b及相关家族成员在各类细胞、特别是血管内皮细胞的生物学行为、作用机制及miR-15b在心血管相关疾病的发生、发展及预后等过程中的作用进行了详细阐述。同时,文章对miR-15b相关家族成员在以胎盘内皮发育异常为病理基础的妊娠期高血压疾病如子痫前期的发病机制中的作用进行了探讨。  相似文献   

8.
9.
MicroRNAs (miRNAs or miRs) are a class of endogenous small non-coding RNAs that consist of about 22 nucleotides and play critical roles in various biological processes, including cell proliferation, differentiation, apoptosis, and tumorigenesis. In recent years, some specific miRNA, such as miR-219, miR-138, miR-9, miR-23, and miR-19b were found to participate in the regulation of oligodendrocyte (OL) differentiation and myelin maintenance, as well as in the pathogenesis of demyelination-related diseases (e.g., multiple sclerosis, ischemic stroke, and leukodystrophy). These miRNAs control their target mRNA or regulate the protein levels of some signaling pathways, and participate in OL differentiation and the pathogenesis of demyelination-related diseases. During pathologic processes, the expression levels of specific miRNAs are dynamically altered. Therefore, miRNAs act as diagnostic and prognostic indicators of defects in OL differentiation and demyelination-related diseases, and they can provide potential targets for therapeutic drug development.  相似文献   

10.
MicroRNAs (miRNA) are small non-coding RNAs that inhibit gene expression through binding to complementary messenger RNA sequences. miRNAs have been predicted to target genes important for pancreas development, proper endocrine cell function and metabolism. We previously described that miRNA-7 (miR-7) was the most abundant and differentially expressed islet miRNA, with 200-fold higher expression in mature human islets than in acinar tissue. Here we have analyzed the temporal and spatial expression of miR-7 in human fetal pancreas from 8 to 22 weeks of gestational age (wga). Human fetal (8–22 wga) and adult pancreases were processed for immunohistochemistry, in situ hybridization, and quantitative RT-PCR of miRNA and mRNA. miR-7 was expressed in the human developing pancreas from around 9 wga and reached its maximum expression levels between 14 and 18 wga, coinciding with the exponential increase of the pancreatic endocrine hormones. Throughout development miR-7 expression was preferentially localized to endocrine cells and its expression persisted in the adult pancreas. The present study provides a detailed analysis of the spatiotemporal expression of miR-7 in developing human pancreas. The specific localization of miR-7 expression to fetal and adult endocrine cells indicates a potential role for miR-7 in endocrine cell differentiation and/or function. Future functional studies of a potential role for miR-7 function in islet cell differentiation and physiology are likely to identify novel targets for the treatment of diabetes and will lead to the development of improved protocols for generating insulin-producing cells for cell replacement therapy.  相似文献   

11.
Oxidative stress is implicated as one of the key causes underlying many diseases. Free radicals are important constituents of basal physiology. Assessment of free radicals or the end products of their action has proved to be difficult. Consequently, authentication of the contribution of free radicals to physiology and pathology has usually been equivocal. Isoprostanes are biosynthesized in vivo, predominantly through free radical attack on arachidonic acid and are now regarded as robust biomarkers of oxidative stress in vivo. Isoprostanes are associated with many human diseases, and their concentration is altered over the course of normal human pregnancy, but their (patho)physiological roles have not yet been clearly defined. Measurement of F2-isoprostanes in body fluids could offer a unique analytical opportunity to study the role of free radicals in physiology and pathophysiology in order to comprehend both oxidative strain and oxidative stress.  相似文献   

12.
Psoriasis is a common immune-mediated chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation, differentiation and apoptosis. However, the exact etiology and pathogenesis are still unclear. Evidence is rapidly accumulating for the role of microRNAs in psoriasis. It has been demonstrated that Interleukin-22 (IL-22) plays vital role in T cell-mediated immune response by interacting with keratinocytes in the pathogenesis of psoriasis. The aim of our study was to explore the possible functional role of miR-20a-3p in psoriasis and in IL-22 induced keratinocyte proliferation. Here, we found that miR-20a-3p was down-regulated in psoriatic lesions and in HaCaT cells (human keratinocyte cell line) treated by IL-22 stimulation. Functional experiments showed that overexpression of miR-20a-3p in HaCaT cells suppressed proliferation and induced apoptosis while its knockdown promoted cell proliferation and reduces cell apoptosis. Mechanistically, SFMBT1 was identified as the direct target of miR-20a-3p by dual luciferase reporter assay. SFMBT1 knockdown was demonstrated to inhibit cell growth and induced apoptosis, which was consistent with the function of miR-20a-3p upregulation in HaCaT cells. In addition, results of western blot analysis showed that miR-20a-3p upregulation or SFMBT1 knockdown changed the protein expression levels of TGF-β1 and survivin. Our findings suggest that miR-20a-3p play roles through targeting SFMBT1 and TGF-β1/Survivin pathway in HaCaT cells, and loss of miR-20a-3p in psoriasis may contribute to hyperproliferation and aberrant apoptosis of keratinocytes.  相似文献   

13.
miR-122是在肝脏特异高表达的一种microRNA。研究表明:生理状态下,miR-122 在调控肝脏的细胞发育、诱导细胞分化、调节细胞代谢、参与肝细胞应急应答等生命活动过程中发挥重要作用;而在病理状态下,miR-122 与丙型肝炎病毒(HCV)和肝细胞肝癌(HCC)密切相关,可能促进HCV RNA 复制,并在HCC发生、发展过程中发挥抑癌基因样作用,可能对HCC 临床诊断和预后具有重要价值。鉴于miR-122 参与调控肝脏生理及肝脏重大疾病的发生、发展等过程,文章详细阐述并讨论miR-122 在肝脏中的生物学特性和功能,以及可能的作用机制。肝脏特异性miR-122 有可能作为治疗人类肝脏疾病的关键靶点。  相似文献   

14.
microRNAs (miRNAs), small noncoding RNAs of 19–25 nt, play an important roles in the pathological processes of tumorigenesis. The object of this study was to study the expression and function of miR-203 and to found its target gene in osteosarcoma. In our study, we found the expression level of miR-203 was significantly downregulated in osteosarcoma cell lines and tissues. In addition, overexpression of miR-203 inhibited the osteosarcoma cell proliferation and migration and inhibited Mesenchymal-to-Epithelial reversion Transition (MErT). Moreover, we identified RAB22A as a direct target of miR-203 and RAB22A overexpression blocks the roles of miR-203 in osteosarcoma cell. Furthermore, we demonstrated that RAB22A expression was upregulated in human osteosarcoma cell lines and tissues. Take together, our results demonstrated that miR-203 act as a tumor suppressor miRNA through regulating RAB22A expression and suggested its involvement in osteosarcoma progression and carcinogenesis.  相似文献   

15.
16.
17.
18.
Abstract

miRNAs are endogenous non-coding RNAs that are ~22 nucleotides in length and can have structural, enzymatic and regulatory functions. miRNAs play important roles in the progression of renal fibrosis. miR-21, through a feed-forward loop and a downstream mediator of transforming growth factor-β (TGF-β), amplifies TGF-β signaling and promotes fibrosis. miR-21 is high on the list of non-coding, small, regulatory RNAs that promote renal fibrosis and emerges as a serum biomarker for kidney diseases, but many questions await answers. This review was performed to sum up the role of miR-21 and its signaling pathways in renal diseases.  相似文献   

19.
Cellular senescence acts as a barrier to cancer progression, and microRNAs (miRNAs) are thought to be potential senescence regulators. However, whether senescence-associated miRNAs (SA-miRNAs) contribute to tumor suppression remains unknown. Here, we report that miR-22, a novel SA-miRNA, has an impact on tumorigenesis. miR-22 is up-regulated in human senescent fibroblasts and epithelial cells but down-regulated in various cancer cell lines. miR-22 overexpression induces growth suppression and acquisition of a senescent phenotype in human normal and cancer cells. miR-22 knockdown in presenescent fibroblasts decreased cell size, and cells became more compact. miR-22-induced senescence also decreases cell motility and inhibits cell invasion in vitro. Synthetic miR-22 delivery suppresses tumor growth and metastasis in vivo by inducing cellular senescence in a mouse model of breast carcinoma. We confirmed that CDK6, SIRT1, and Sp1, genes involved in the senescence program, are direct targets of miR-22. Our study provides the first evidence that miR-22 restores the cellular senescence program in cancer cells and acts as a tumor suppressor.  相似文献   

20.
The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined based on sequence similarity near the mature miRNAs' 5′ end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete; thus, a definitive taxonomic classification (e.g., designation as a “superfamily”) is currently not possible. While all vertebrates studied to date express miR-15a, miR-15b, miR-16, miR-103, and miR-107, mammals alone are known to express miR-195, miR-424, miR-497, miR-503, and miR-646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate to high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray matter and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103 and also support the importance of the mature miRNAs' 5′ seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically oriented translational researchers alike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号