共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggrecan and its chondroitin sulfate in cartilage 总被引:1,自引:0,他引:1
Watanabe H 《Seikagaku. The Journal of Japanese Biochemical Society》2008,80(1):28-32
2.
Pratta MA Yao W Decicco C Tortorella MD Liu RQ Copeland RA Magolda R Newton RC Trzaskos JM Arner EC 《The Journal of biological chemistry》2003,278(46):45539-45545
The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely degraded following incubation with MMP-1, collagen in cartilage with intact aggrecan was not. Using interleukin-1-stimulated bovine nasal cartilage explants where aggrecan depletion occurs during the first week of culture, followed by collagen loss during the second week, we evaluated the effect of selective MMP and aggrecanase inhibitors on degradation. A selective MMP inhibitor did not block aggrecan degradation but caused complete inhibition of collagen breakdown. Similar inhibition was seen with inhibitor addition following aggrecan depletion on day 6-8, suggesting that MMPs are not causing significant collagen degradation prior to the second week of culture. Inclusion of a selective aggrecanase inhibitor blocked aggrecan degradation, and, in addition, inhibited collagen degradation. When the inhibitor was introduced following aggrecan depletion, it had no effect on collagen breakdown, ruling out a direct effect through inhibition of collagenase. These data suggest that aggrecan plays a protective role in preventing degradation of collagen fibrils, and that an aggrecanase inhibitor may impart overall cartilage protection. 相似文献
3.
Determination of the molecules that regulate astrocyte development has been hindered by the paucity of markers that identify astrocytic precursors in vivo. Here we report that the chondroitin sulfate proteoglycan aggrecan both regulates astrocyte development and is expressed by embryonic glial precursors. During chick brain development, the onset of aggrecan expression precedes that of the astrocytic marker GFAP and is concomitant with detection of the early glial markers GLAST and glutamine synthetase. In co-expression studies, we established that aggrecan-rich cells contain the radial glial markers nestin, BLBP and GLAST and later in embryogenesis, the astroglial marker GFAP. Parallel in vitro studies showed that ventricular zone cultures, enriched in aggrecan-expressing cells, could be directed to a GFAP-positive fate in G5-supplemented differentiation media. Analysis of the chick aggrecan mutant nanomelia revealed marked increases in the expression of the astrocyte differentiation genes GFAP, GLAST and GS in the absence of extracellular aggrecan. These increases in astrocytic marker gene expression could not be accounted for by changes in precursor proliferation or cell death, suggesting that aggrecan regulates the rate of astrocyte differentiation. Taken together, these results indicate a major role for aggrecan in the control of glial cell maturation during brain development. 相似文献
4.
5.
Sabin Llona-Minguez Shabnam Fayezi Alireza Alihemmati Jordi Juárez-Jiménez F. Javier Piedrafita Thomas Helleday 《Bioorganic & medicinal chemistry letters》2017,27(18):4462-4466
A series of tetrahydrobenzothiophene carboxamides, inspired by structural features present in kinase and SCD1 inhibitors, are presented here. Prototype compound 8 (MMDD13) modulates fatty acid elongase and desaturase indexes, lipid accumulation, while preserving kinase inhibitory activity. This chemotype represents a stepping stone towards chemical probes to study the consequences of lipid metabolism modulation through non-redundant pathways. 相似文献
6.
7.
Ann Vincent Roberto P Benzo Mary O Whipple Samantha J McAllister Patricia J Erwin Leorey N Saligan 《Arthritis research & therapy》2013,15(6):221
Fatigue is a disabling, multifaceted symptom that is highly prevalent and stubbornly persistent. Although fatigue is a frequent complaint among patients with fibromyalgia, it has not received the same attention as pain. Reasons for this include lack of standardized nomenclature to communicate about fatigue, lack of evidence-based guidelines for fatigue assessment, and a deficiency in effective treatment strategies. Fatigue does not occur in isolation; rather, it is present concurrently in varying severity with other fibromyalgia symptoms such as chronic widespread pain, unrefreshing sleep, anxiety, depression, cognitive difficulties, and so on. Survey-based and preliminary mechanistic studies indicate that multiple symptoms feed into fatigue and it may be associated with a variety of physiological mechanisms. Therefore, fatigue assessment in clinical and research settings must consider this multi-dimensionality. While no clinical trial to date has specifically targeted fatigue, randomized controlled trials, systematic reviews, and meta-analyses indicate that treatment modalities studied in the context of other fibromyalgia symptoms could also improve fatigue. The Outcome Measures in Rheumatology (OMERACT) Fibromyalgia Working Group and the Patient Reported Outcomes Measurement Information System (PROMIS) have been instrumental in propelling the study of fatigue in fibromyalgia to the forefront. The ongoing efforts by PROMIS to develop a brief fibromyalgia-specific fatigue measure for use in clinical and research settings will help define fatigue, allow for better assessment, and advance our understanding of fatigue. 相似文献
8.
9.
10.
The permeability coefficients of sulphate ion in post-mortem human articular cartilage were found to be the same whether cells were alive or dead; thus diffusion of solutes is not via active transport. From the diffusion coefficient and the thickness of cartilage, the minimum time of incubation necessary to obtain meaningful results on sulphate uptake and incorporation, could be calculated.The rate of 35S-labelled sulphate incorporation was linear up to 8 h. In Eagle's medium, the mean rates of incorporation, in mmoles/gram of wet tissue per h were 2 · 10?6 for the femoral head and 3.3 · 10?6 for the femoral condyle. The faster turnover rate in the condyle correlates with a lower glycosaminoglycan content.Sulphate uptake was found to vary directly with the inorganic sulphate content. Since the latter by Donnan equilibrium, is in inverse ratio to the glycosaminoglycan content, this would explain why sulphate uptake was found to be lower where the glycosaminoglycan content was higher.The half-life of glycosaminoglycans was estimated at 200–300 days i.e. much higher than previously suggested.Zonal variations in uptake were studied both in normal and fibrillated tissue; the latter has a low rate of incorporation, throughout its depth, compared to healthy cartilage. 相似文献
11.
Stuart W. Tompson Barry Merriman Vincent A. Funari Maryline Fresquet Ralph S. Lachman David L. Rimoin Stanley F. Nelson Michael D. Briggs Daniel H. Cohn Deborah Krakow 《American journal of human genetics》2009,84(1):72-79
Analysis of a nuclear family with three affected offspring identified an autosomal-recessive form of spondyloepimetaphyseal dysplasia characterized by severe short stature and a unique constellation of radiographic findings. Homozygosity for a haplotype that was identical by descent between two of the affected individuals identified a locus for the disease gene within a 17.4 Mb interval on chromosome 15, a region containing 296 genes. These genes were assessed and ranked by cartilage selectivity with whole-genome microarray data, revealing only two genes, encoding aggrecan and chondroitin sulfate proteoglycan 4, that were selectively expressed in cartilage. Sequence analysis of aggrecan complementary DNA from an affected individual revealed homozygosity for a missense mutation (c.6799G → A) that predicts a p.D2267N amino acid substitution in the C-type lectin domain within the G3 domain of aggrecan. The D2267 residue is predicted to coordinate binding of a calcium ion, which influences the conformational binding loops of the C-type lectin domain that mediate interactions with tenascins and other extracellular-matrix proteins. Expression of the normal and mutant G3 domains in mammalian cells showed that the mutation created a functional N-glycosylation site but did not adversely affect protein trafficking and secretion. Surface-plasmon-resonance studies showed that the mutation influenced the binding and kinetics of the interactions between the aggrecan G3 domain and tenascin-C. These findings identify an autosomal-recessive skeletal dysplasia and a significant role for the aggrecan C-type lectin domain in regulating endochondral ossification and, thereby, height. 相似文献
12.
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm. 相似文献
13.
14.
Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature. 相似文献
15.
Thomas A. Jowitt Alan D. Murdoch Clair Baldock Richard Berry Joanna M. Day Timothy E. Hardingham 《Proteins》2010,78(16):3317-3327
Structural investigation of proteins containing large stretches of sequences without predicted secondary structure is the focus of much increased attention. Here, we have produced an unglycosylated 30 kDa peptide from the chondroitin sulphate (CS)‐attachment region of human aggrecan (CS‐peptide), which was predicted to be intrinsically disordered and compared its structure with the adjacent aggrecan G3 domain. Biophysical analyses, including analytical ultracentrifugation, light scattering, and circular dichroism showed that the CS‐peptide had an elongated and stiffened conformation in contrast to the globular G3 domain. The results suggested that it contained significant secondary structure, which was sensitive to urea, and we propose that the CS‐peptide forms an elongated wormlike molecule based on a dynamic range of energetically equivalent secondary structures stabilized by hydrogen bonds. The dimensions of the structure predicted from small‐angle X‐ray scattering analysis were compatible with EM images of fully glycosylated aggrecan and a partly glycosylated aggrecan CS2‐G3 construct. The semiordered structure identified in CS‐peptide was not predicted by common structural algorithms and identified a potentially distinct class of semiordered structure within sequences currently identified as disordered. Sequence comparisons suggested some evidence for comparable structures in proteins encoded by other genes (PRG4, MUC5B, and CBP). The function of these semiordered sequences may serve to spatially position attached folded modules and/or to present polypeptides for modification, such as glycosylation, and to provide templates for the multiple pleiotropic interactions proposed for disordered proteins. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
16.
17.
M. M. Salpeter 《Journal of morphology》1968,124(4):387-421
Electron microscope autoradiography was used to study cartilage from regenerating limbs of adult newts, Triturus, after intraperitoneal injections of proline-3H. The labeling in the endoplasmic reticulum, small vesicles, Golgi vacuoles, ground cytoplasm and extracellular matrix was compared during the secretion of radioactive products. The data appear to indicate that a large part of the radioactive secretion probably leaves the cell after having been in only one cellular compartment. Although this compartment may be the endoplasmic reticulum, a considerable amount of radioactivity fluxes through the ground cytoplasm and the possibility cannot be excluded that some secretory components leave the cell directly from the ground cytoplasm. The data appear incompatible with the hypothesis that all the radioactivity seen in the extracellular matrix arrived there via a single pathway involving first the endoplasmic reticulum and then the Golgi vacuoles. It is not, however, incompatible with a hypothesis that a fraction of the radioactive product uses this pathway. 相似文献
18.
19.
Classical phylogenetic, neuroanatomical and neuroembryological studies propose an independent evolutionary origin of the brains of insects and vertebrates. Contrasting with this, data from three sets of molecular and genetic analyses indicate that the developmental program of brains of insects and vertebrates might be highly conserved and suggest a monophyletic origin of the brain of protostomes and deuterostomes. First, recent results of molecular phylogeny imply that none of the currently living animals correspond to evolutionary intermediates between protostomes and deuterostomes, thus making it impossible to infer the morphological organization of an ancestral bilaterian brain from living specimens. Second, recent molecular genetic evidence provides support for the body axis inversion hypothesis, which implies that a dorsoventral inversion of the body axis occurred in protostomes versus deuterostomes, leading to the inverted location of neurogenic regions in these animal groups. Third, recent developmental genetic analyses are uncovering the existence of structurally and functionally homologous genes that have comparable and interchangeable functions in early brain development in insect and vertebrate model systems. Thus, development of the anteriormost part of the embryonic brain in both insects and vertebrates depends upon the otd/Otx and ems/Emx genes; development of the posterior part of the embryonic brain in both insects and vertebrates involves homologous control genes of the Hox cluster. These findings, which demonstrate the conserved expression and function of key patterning genes involved in embryonic brain development in insects and vertebrates support the hypothesis that the brains of protostomes and deuterostomes are of monophyletic, urbilaterian origin. 相似文献
20.
Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development 总被引:8,自引:0,他引:8
Recent molecular genetic analyses of Drosophila melanogaster and mouse central nervous system (CNS) development revealed strikingly similar genetic patterning mechanisms in the formation of the insect and vertebrate brain. Thus, in both insects and vertebrates, the correct regionalization and neuronal identity of the anterior brain anlage is controlled by the cephalic gap genes otd/Otx and ems/Emx, whereas members of the Hox genes are involved in patterning of the posterior brain. A third intermediate domain on the anteroposterior axis of the vertebrate and insect brain is characterized by the expression of the Pax2/5/8 orthologues, suggesting that the tripartite ground plans of the protostome and deuterostome brains share a common evolutionary origin. Furthermore, cross-phylum rescue experiments demonstrate that insect and mammalian members of the otd/Otx and ems/Emx gene families can functionally replace each other in embryonic brain patterning. Homologous genes involved in dorsoventral regionalization of the CNS in vertebrates and insects show remarkably similar patterning and orientation with respect to the neurogenic region (ventral in insects and dorsal in vertebrates). This supports the notion that a dorsoventral body axis inversion occurred after the separation of protostome and deuterostome lineages in evolution. Taken together, these findings demonstrate conserved genetic patterning mechanisms in insect and vertebrate brain development and suggest a monophyletic origin of the brain in protostome and deuterostome bilaterians. 相似文献