首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of the yeast Saccharomyces cerevisiae are known to acquire thermotolerance in response to the stresses of starvation or heat shock. We show here through the use of cell cycle inhibitors that blockage of yeast cells in the G1, S, or G2 phases of the mitotic cell cycle is not a stress that induces thermotolerance; arrested cells remained as sensitive to thermal killing as proliferating cells. These G1- or S-phase-arrested cells were unimpaired in the acquisition of thermotolerance when subjected to a mild heat shock by incubation at 37 degrees C. One cell cycle inhibitor, o-phenanthroline, did in fact cause cells to become thermotolerant but without induction of the characteristic pattern of heat shock proteins. Thermal induction of heat shock protein synthesis was unaffected; the o-phenanthroline-treated cells could still synthesize heat shock proteins upon transfer to 37 degrees C. Use of a novel mutant conditionally defective only for the resumption of proliferation from stationary phase (M. A. Drebot, G. C. Johnston, and R. A. Singer, Proc. Natl. Acad. Sci. USA 84:7948-7952, 1987) indicated that o-phenanthroline inhibition produces a stationary-phase arrest, a finding which is consistent with the increased thermotolerance and regulated cessation of proliferation exhibited by the inhibited cells. These findings show that the acquired thermotolerance of cells is unrelated to blockage of the mitotic cell cycle or to the rapid synthesis of the characteristic spectrum of heat shock proteins.  相似文献   

2.
When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.  相似文献   

3.
4.
本文介绍了植物热激蛋白的产:生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展。  相似文献   

5.
植物热激蛋白的功能及其基因表达的调控   总被引:23,自引:0,他引:23  
本文介绍了植物热激蛋白的产生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展  相似文献   

6.
7.
8.
Caulobacter crescentus cells respond to a sudden increase in temperature by transiently inducing the synthesis of several polypeptides. Two of the proteins induced, Hsp62 and Hsp70, were shown to be analogous to the heat shock proteins of Escherichia coli, GroEL and DnaK, respectively, by immunological cross-reactivity with antibodies raised against the E. coli proteins. Two-dimensional gel electrophoretic resolution of extracts of cells labeled with [35S]methionine during heat shock led to the identification of 20 distinct Hsps in C. crescentus which are coordinately expressed, in response to heat, at the various stages of the cell division cycle. Thus, a developmental control does not seem to be superimposed on the transient activation of the heat shock genes. Nonetheless, under normal temperature conditions, four Hsps (Hsp70, Hsp62, Hsp24b, and Hsp23a) were shown to be synthesized, and their synthesis was cell cycle regulated.  相似文献   

9.
Kim HJ  Joo HJ  Kim YH  Ahn S  Chang J  Hwang KB  Lee DH  Lee KJ 《PloS one》2011,6(6):e20252
The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF-1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins.  相似文献   

10.
In chondrocytes, a low-amplitude intermittent hydrostatic pressure induces production of extracellular matrix molecules, while high hydrostatic pressure inhibits it. High pressure increases cellular heat shock protein 70 level in a number of cell types on account of increased stabilisation of the heat shock protein 70 mRNA. In our experiments, only bovine primary chondrocytes, but not an immortalized chondrocytic cell line, could resist the induction of the stress response in the presence of continuous 30 MPa hydrostatic pressure. We have recently shown that protein synthesis is required for the stabilization. According to two-dimensional gel electrophoresis the synthesis of heat shock protein 90 was also increased in a chondrocytic cell line and in HeLa cells, and mass spectrometric analysis suggested that the induction was rather due to increase in heat shock protein 90beta than in heat shock protein 90alpha. The stress response was rather intense in HeLa cells, therefore, we investigated the effect of continuous 30 MPa hydrostatic pressure on the expression of the two heat shock protein 90 genes in HeLa cells using Northern and Western blot analyses. Heat shock protein 90beta mRNA level increased within 6 hours of exposure to 30 MPa hydrostatic pressure, while hsp90alpha level remained stable. At protein level there was a clear increase in the heat shock protein 90beta/heat shock protein 90alpha ratio, too. These results show a specific regulation of stress proteins in cells exposed to high hydrostatic pressure.  相似文献   

11.
12.
Extensive alteration of gene expression and metabolic remodeling enable the budding yeast Saccharomyces cerevisiae to ensure cellular homeostasis and adaptation to heat shock. The response logic of the cells to heat shock is still not entirely clear. In this study, we combined the expression profiles with metabolic pathways to investigate the logical relations between heat shock response metabolic pathways. The results showed that the heat-stressed S. cerevisiae cell accumulated trehalose and glycogen, which protect cellular proteins against denaturation, and modulate its phospholipid structure to sustain stability of the cell wall. The TCA cycle was enhanced, and the heat shock-induced turnover of amino acids and nucleotides served to meet the extra energy requirement due to heat-induced protein metabolism and modification. The enhanced respiration led to oxidative stress, and subsequently induced the aldehyde detoxification system. These results indicated that new insight into the response logic of S. cerevisiae to heat shock can be gained by integrating expression profiles and the logical relations between heat shock response metabolic pathways.  相似文献   

13.
The heat shock response is a universal phenomenon and is among the most highly conserved cellular responses. However, BC-8, a rat histiocytoma, fails to mount a heat shock response unlike all other eukaryotic cells. In the absence of induction of heat shock proteins, apoptotic cell death is activated in BC-8 tumor cells upon heat shock. We demonstrate here that stable transformants of BC-8 tumor cells transfected with hsp70 cDNA constitutively express hsp70 protein and are transiently protected from heat induced apoptosis for 6-8 h. In addition heat stress induces CD95 gene expression in these tumor cells. There is a delay in CD95 expression in hsp70 transfected cells suggesting a correlation between the cell surface expression of CD95 and the time of induction of apoptosis in this tumor cell line. Also expression of CD95 antigen appears to inhibit the interaction between heat shock factors and heat shock elements in these cells resulting in the lack of heat shock response.  相似文献   

14.
The endemic fish fauna of the Southern Ocean are cold-adapted stenotherms and are acutely sensitive to elevated temperature. Many of these species lack a heat shock response and cannot increase the production of heat shock proteins in their tissues. However, some species retain the ability to induce other stress-responsive genes, some of which are involved in cell cycle arrest and apoptosis. Here, the effect of heat on cell cycle stage and its ability to induce apoptosis were tested in thermally stressed hepatocytes from a common Antarctic fish species from McMurdo Sound in the Ross Sea. Levels of proliferating cell nuclear antigen were also measured as a marker of progression through the cell cycle. The results of these studies demonstrate that even sub-lethal heat stress can have deleterious impacts at the cellular level on these environmentally sensitive species.  相似文献   

15.
16.
17.
The response kinetics of rat C6 glioma cells to heat shock was investigated by means of flow cytometric DNA measurements and western blot analysis of HSP levels. The results showed that the effects on cell cycle progression are dependent on the cell cycle phase at which heat shock is applied, leading to either G1 or G2/M arrest in randomly proliferating cells. When synchronous cultures were stressed during G0 they were arrested with G1 DNA content and showed prolongation of S and G2 phases after release from the block. In proliferating cells, HSC70 and HSP68 were induced during the recovery and reached maximum levels just before cells were released from the cell cycle blocks. Hyperthermic pretreatment induced thermotolerance both in asynchronous and synchronous cultures as evidenced by the reduced arrest of cell cycle progression after the second heat shock. Thermotolerance development was independent of the cell cycle phase. Pre-treated cells already had high HSP levels and did not further increase the amount of HSP after the second treatment. However, as in unprimed cells, HSP reduction coincided with the release from the cell cycle blocks. These results imply that the cell cycle machinery can be rendered thermotolerant by heat shock pretreatment and supports the assumption that HSP70 family members might be involved in thermotolerance development.  相似文献   

18.
Although heat shock response is ubiquitous in bacterial cells, the underlying physical chemistry behind heat shock response remains poorly understood. To study the response of cell populations to heat shock we employ a physics-based ab initio model of living cells where protein biophysics (i.e., folding and protein-protein interactions in crowded cellular environments) and important aspects of proteins homeostasis are coupled with realistic population dynamics simulations. By postulating a genotype-phenotype relationship we define a cell division rate in terms of functional concentrations of proteins and protein complexes, whose Boltzmann stabilities of folding and strengths of their functional interactions are exactly evaluated from their sequence information. We compare and contrast evolutionary dynamics for two models of chaperon action. In the active model, foldase chaperones function as nonequilibrium machines to accelerate the rate of protein folding. In the passive model, holdase chaperones form reversible complexes with proteins in their misfolded conformations to maintain their solubility. We find that only cells expressing foldase chaperones are capable of genuine heat shock response to the increase in the amount of unfolded proteins at elevated temperatures. In response to heat shock, cells’ limited resources are redistributed differently for active and passive models. For the active model, foldase chaperones are overexpressed at the expense of downregulation of high abundance proteins, whereas for the passive model; cells react to heat shock by downregulating their high abundance proteins, as their low abundance proteins are upregulated.  相似文献   

19.
Rat hepatoma cells become refractory to the induction of heat shock proteins and highly resistant to severe hyperthermia when incubated in Ca2+-free medium. The Ca2+-depleted cells synthesize polypeptides identified as the glucose-regulated proteins, but these proteins do not appear to be directly involved in the inhibition of the heat shock response. The results suggest that a Ca2+-dependent metabolic process is involved in the generation of the heat shock signal and/or mediates a step in the subsequent cascade of events that leads to the induction of heat shock protein synthesis and cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号