首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoactive retinal pigments in haloalkaliphilic bacteria   总被引:3,自引:0,他引:3  
Light-induced fast transient absorbance changes were detected by time-resolved spectroscopy in 38 of 51 haloalkaliphilic isolates from alkaline salt lakes in Kenya and the Wadi Natrun in Egypt. They indicate the presence of two retinal pigments, Pf and Ps, which undergo cyclic photoreactions with half-times of 2 ms and 500 ms respectively. Pf absorbs maximally near 580 nm and Ps near 500 nm. The pigments differ in their sensitivity to hydroxylamine and detergent bleaching and the photoreactions of Pf are strongly dependent on chloride concentration. Of the 38 pigment-containing strains, 29 possess both Pf and Ps, 9 possess only Ps. Inhibition of retinal synthesis with nicotine blocks pigment formation and addition of retinal restores it. Hydroxylamine-bleached pigments can be reconstituted with retinal or retinal analogues. Their similarity to the retinal pigments of Halobacterium halobium strongly suggests that they are also rhodopsin-like retinyledene proteins. Pf in all properties tested is almost identical to halorhodopsin, the light-driven chloride pump of H. halobium, and may serve the same function in the haloalkaliphiles. Ps has photocycle kinetics similar to sensory rhodopsin and a far-blue-shifted long-lived photocycle intermediate, but its ground state absorption maximum is near 500 nm instead of 587 nm. We have not found a bacteriorhodopsin-like pigment in the haloalkaliphiles.  相似文献   

2.
Synthetic pigment analogues of the purple membrane protein.   总被引:1,自引:0,他引:1       下载免费PDF全文
Nonphysiological analogues of retinal have been shown to form pigments in reactions with the apoprotein of the purple membrane of Halobacterium halobium. Both the all-trans and 13-cis isomers of a retinal analogue, having an elongated chain with an extra double bond, formed pigments. Unlike the native all-trans and 13-cis retinal1-based pigments, the new pigments were not interconvertible with each other and were unstable against hydroxylamine. When incorporated into phospholipid vesicles, they showed no proton pumping activity upon illumination. The ability of the extended-length retinal to form pigments contrasts with its nonreactivity with opsin (apoprotein of rhodopsin), suggesting a less stringent binding site for the purple membrane chromophore. All-trans retinal2 also combined with bleached purple membrane to form a blue pigment absorbing at ca. 590 nm. Like the native purple membrane, the blu membrane showed proton pumping activity upon illumination in phospholipid vesicles.  相似文献   

3.
Ring desmethyl and acyclic analogues of all-trans retinal were incorporated into the apoprotein of the phototaxis receptor sensory rhodopsin I (SR-I) in Halobacterium halobium membranes. All modified retinals generate SR-I analogue pigments which exhibit "opsin shifts," i.e., their absorption spectra are shifted to longer wavelengths compared with model protonated Schiff bases of the same analogues. Each SR-I pigment analogue exhibits cyclic photochemical reactions as monitored by flash spectroscopy, but the analogue photocycles differ from that of native SR-I by exhibiting pronounced biphasic recovery of flash-induced absorption changes and abnormal flash-induced absorption difference spectra. Despite perturbations in the photochemical properties, the SR-I pigment analogues are capable of both attractant (single photon) and repellent (two photon) phototaxis signaling in cells. Our interpretation is that the hydrophobic ring substituents interact with the binding pocket to maintain the correct configuration for native SR-I absorption and photochemistry, but these interactions are not essential for the physiological function of SR-I as a dual attractant/repellent phototaxis receptor. These results support the conclusion emerging from several studies that the photoactivation process that triggers the conformation changes of SR-I and the related proton pump bacteriorhodopsin is conserved despite the different biological functions of their photoactivation.  相似文献   

4.
Membranes of Halobacterium halobium contain two photochemically reactive retinal pigments in addition to the proton pump bacteriorhodopsin. One, halorhodopsin, is also an electrogenic ion pump with a fast (on a scale of milliseconds) photoreaction cycle. The other, s-rhodopsin, is active in the same spectral region, but has a much slower photoreaction cycle (on a scale of seconds). S-rhodopsin is not an electrogenic ion pump and its properties suggest it functions as the receptor pigment for phototaxis. All three pigments have very similar absorption spectra. The recent isolation of mutants deficient in both bacteriorhodopsin and halorhodopsin and in retinal synthesis has allowed us to resolve the absorption spectra of s-rhodopsin and halorhodopsin. At neutral pH s-rhodopsin has an absorption maximum at 587 +/- 2 nm and halorhodopsin at 578 +/- 2 nm. At pH 10.8, lambda max for s-rhodopsin is shifted to 552 nm and extinction decreases slightly (15%) while halorhodopsin loses all extinction above 500 nm. Both effects are fully reversible and allow determination of the amounts of s-rhodopsin and halorhodopsin in membrane preparations containing both pigments. Both pigments were present in earlier studies of H. halobium membranes, and in view of these findings, several observations must be reinterpreted.  相似文献   

5.
Phoborhodopsin (pR) is the fourth retinal pigment of Halobacterium halobium and works as a photoreceptor for the negative phototactic response. A similar pigment was previously found in haloalkaliphilic bacterium (Natronbacterium pharaonis) and also works as the receptor of the negative phototactic response; this pigment is called pharaonis phoborhodopsin (ppR). In this paper, the photocycle of ppR was investigated by means of low-temperature spectrophotometry. The absorption maximum of ppR is located at 498 nm, while that of pR is at 487 nm. The absorption spectra of the two have similar vibrational structures. Irradiation of ppR below -100 degrees C produced a K-like intermediate (ppRK) which was a composite of two components. The original ppR and ppRK were perfectly photoreversible. On warming, ppRK was directly converted to an M-like intermediate without formation of the L-like intermediate. The M-like intermediate was converted to the O-like intermediate at pH 7.2, but the O-like intermediate was not detected at pH 9.0. The O-like intermediate then reverted to the original pigment. On the basis of these findings, the photocycle and the primary photochemical process of ppR are presented.  相似文献   

6.
A method for synthesis of retinal analogs labeled with electron-density groups is suggested. The interaction of these polyene compounds with bacterioopsin in apomembrane of Halobacterium salinarum was tested. A retinal analog containing a crown-ether receptor group is able to interact readily with bacterioopsin giving rise to rapid formation of a pigment with absorption maximum at 460 nm. This pigment is capable of undergoing cyclic photoconversion. The crown-bacteriorhodopsin photocycle is extremely slow and its quantum efficiency is very low (3% of that in native bacteriorhodopsin). This photocycle includes an M-like intermediate with a differential absorption maximum at 380 nm. A retinal analog in which the -ionone ring is replaced by ferrocene moiety forms a stable chromoprotein with the main absorption band at 483 nm and a shoulder near 590-610 nm.  相似文献   

7.
The effect of the length of the retinal polyene side chain on bacterioopsin pigment formation and function has been investigated with two series of synthetic retinal analogues. Cyclohexyl derivatives with polyene chains one carbon longer and one or more carbons shorter than retinal and linear polyenes with no ring have been synthesized and characterized. Compounds of six carbons or less in the polyene chain form pigments very poorly or not at all with bacterioopsin. Compounds containing at least seven carbons in the chain are found to form reasonably stable bacterioopsin pigments that show a small shift in absorbance on irradiation. However, photocycling and proton photorelease are not detected. The analogue with nine carbons in the polyene chain (one less than retinal) forms a stable pigment with an M-type intermediate but demonstrates reduced amounts of photocycling and light-activated proton release. The analogue with a polyene chain identical with that of retinal, but containing no ring, forms a pigment that shows both an efficient light-activated proton photocycle and release. The pigment containing the chromophore with the polyene chain one carbon longer than retinal is likewise fully active. We thus conclude that the length of the polyene chain must be at least 9 carbons for the formation of a stable pigment that photocycles and must be 10 carbons for both the photocycle and light-activated proton release to have a high quantum efficiency.  相似文献   

8.
Iodophenyl and anthryl retinal analogues have been synthesized. Thetrans-isomers have been isolated and purified by high pressure liquid chromatography. The purified isomers have been further characterized by nuclear magnetic resonance and ultraviolet-visible spectroscopy. Incubation of these retinal analogues with apoprotein (bacterioopsin), isolated from the purple membrane ofHalobacterium halobium gave new bacteriorhodopsin analogues. These analogues have been investigated for their absorption properties and stability. The iodophenyl analogue has been found to bind to bacterioopsin rapidly. The pigment obtained from this analogue showed a dramatically altered opsin shift of 1343 cm-1. The anthryl analogue based bacteriorhodopsin, however, showed an opsin shift of 3849 cm-1. It has been found that bacteriorhodopsin is quite unrestrictive in the ionone ring site. The apoprotein seems to prefer chromophores that have the ring portion co-planar with the polyene side chain. The purple membrane has also been modified by treatment with fluorescamine, a surface active reagent specific for amino groups. Reaction under controlled stoichiometric conditions resulted in the formation of a modified pigment. The new pigment showed a band at 390 nm—indicative of fluorescamine reaction with amino group (s) of apoprotein-besides retaining its original absorption band at 560 nm. Analysis of the fluorescamine modified bacteriorhodopsin resulted in the identification of lysine 129 as the modified amino acid residue. Fluorescamine-modified-bacteriorhodopsin suspension did not release protons under photolytic conditions. However, proteoliposomes of fluorescamine-modified-bacteriorhodopsin were found to show proton uptake, though at a reduced rate. Presented at the 3rd National Symposium on Bioorganic Chemistry, 1987, Hyderabad.  相似文献   

9.
Light-induced sodium extrusion from H halobium cell envelope vesicles proceeds largely through an uncoupler-sensitive pathway involving bacteriorhodopsin and a proton/sodium antiporter. Vesicles from bacteriorhodopsin-negative strains also extrude sodium ions during illumination, but this transport is not sensitive to uncouplers and has been proposed to involve a light-energized primary sodium pump. Proton uptake in such vesicles is passive, and under steady-state illumination the large electrical potential (negative inside) is just balanced by a pH difference (acid inside), so that the protonmotive force is near zero. Action spectra indicated that this effect of illumination is attributable to a pigment absorbing near 585 nm (of 568 for bacteriorhodopsin). Bleaching of the vesicles by prolonged illumination with hydroxylamine results in inactivation of the transport; retinal addition causes partial return of the activity. Retinal addition also causes the appearance of an absorption peak at 588 nm, while the absorption of free retinal decreases. The 588 nm pigment is present in very small quantities (0.13 nmole/mg protein), and behaves differently from bacteriorhodopsin in a number of respects. Vesicles can be prepared from bacteriorhodopsin-containing H halobium strains in which primary transport for both protons and sodium can be observed. Both pumps appear to cause the outward transport of the cations. The observations indicate the existence of a second retinal protein, in addition to bacteriorhodopsin, in H halobium, which is associated with primary sodium translocation. The initial proton uptake normally observed during illumination of whole H halobium cells may therefore be a passive flux in response to the primary sodium extrusion.  相似文献   

10.
Sensory rhodopsin I (SR-I) is a retinal-containing pigment which functions as a phototaxis receptor in Halobacterium halobium. We have obtained resonance Raman vibrational spectra of the native membrane-bound form of SR587 and used these data to determine the structure of its retinal prosthetic group. The similar frequencies and intensities of the skeletal fingerprint modes in SR587, bacteriorhodopsin (BR568), and halorhodopsin (HR578) as well as the position of the dideuterio rocking mode when SR-I is regenerated with 12,14-D2 retinal (915 cm-1) demonstrate that the retinal chromophore has an all-trans configuration. The shift of the C = N stretching mode from 1628 cm-1 in H2O to 1620 cm-1 in D2O demonstrates that the chromophore in SR587 is bound to the protein by a protonated Schiff base linkage. The small shift of the 1195 cm-1 C14-C15 stretching mode in D2O establishes that the protonated Schiff base bond has an anti configuration. The low value of the Schiff base stretching frequency together with its small 8 cm-1 shift in D2O indicates that the Schiff base proton is weakly hydrogen bonded to its protein counterion. This suggests that the red shift in the absorption maximum of SR-I (587 nm) compared with HR (578 nm) and BR (568 nm) is due to a reduction of the electrostatic interaction between the protonated Schiff base group and its protein counterion.  相似文献   

11.
T Iwasa 《Biochemistry》1992,31(4):1190-1195
Halorhodopsin (HR), the light-driven chloride pump of Halobacterium halobium, was bleached with hydroxylamine and regenerated with all-trans-retinal under several different conditions. The largest recovery of the pigment was found with apoprotein obtained from detergent-free HR [HR(BB)]. To compare the chloride-pumping mechanism of HR with that of bacteriorhodopsin (BR; the light-driven proton pump of the same bacteria), HR pigment analogues were reconstituted with the bleached HR (BB) and retinal analogues. The corresponding BR pigment analogues have previously been shown to have little or no proton-pumping activity, except for retinal2 (3,4-dehydroretinal). Pigment analogues with 13-demethylretinal or retinal2 showed an "opsin shift" similar to that of the all-trans-retinal pigment of both HR and BR. Opsin shifts of the pigments of 9-12-phenylretinal and 3,7-dimethyl-2,4,6,8-decatetraenal and haloopsin are slightly different from those of the corresponding BR pigment analogues, presumably reflecting differences of the chromophoric structures in HR and BR. In addition to the spectral properties, the effect of chloride ion on deprotonation of the Schiff base was measured. These pigment analogues showed the "chloride effect" (a shift of the pK value for deprotonation of the Schiff base), but a smaller one than that seen in HR. For a measurement of the chloride-pumping activity, each retinal analogue was added to a culture of L07 cells (BOP-, HOP+, Ret-), and the activity was measured with the cell suspension. Only cultures with retinal or retinal2 showed chloride-pumping activity, as is true for proton pumping by BR. This suggests that a similar retinal-protein interaction is necessary for both ion pumps.  相似文献   

12.
Halorhodopsin (HR), the light-driven chloride transport pigment of Halobacterium halobium, was bleached and reconstituted with retinal analogues with the pi electron system interrupted at different locations (dihydroretinals). The absorption maxima of the artificial pigments formed with the dihydroretinals are found to be very similar to those of the corresponding pigments formed by reconstitution of bacteriorhodopsin (BR) and sensory rhodopsin (SR). This strongly suggests that the distribution of charges around the retinal is similar in all three bacterial rhodopsins. Comparison of the primary, and proposed secondary, structures for HR and BR reveal conserved asparagine (asp) and arginine (arg) residues, which are likely candidates for the ionizable amino acids that interact with the retinal. In a second set of experiments absorption shifts due to the binding of anions to Sites I and II in HR, reconstituted with different retinal analogues, were used to estimate the locations of these binding sites relative to the retinal. Site I is localized near the Schiff base, and Site II near the ionone ring. On the basis of these results a structural model for HR is proposed, which accounts for the spectroscopic properties of HR in terms of the three buried arg residues and two of the buried asp residues in the protein.  相似文献   

13.
A fourth retinal-containing pigment in Halobacterium halobium cell membrane was examined by flash spectrophotometry. The absorption maximum of this pigment was at about 480 nm. Flash light caused a photoreaction cycle with a half recovery time of about 300 ms at room temperature. The photoreaction cycle involved at least two photo-intermediates. The absorption maximum of the first one was at about 350 nm and that of the second was at around 530 nm. The spectral properties of this pigment and the content of the cells correlate with the sensitivity of photo-repellent response to the light around 480 nm. We suggest a name 'phoborhodopsin' for this new pigment.  相似文献   

14.
A Maeda  A E Asato  R S Liu  T Yoshizawa 《Biochemistry》1984,23(11):2507-2513
Absorption spectral properties of aromatic analogues of retinal with apopurple membrane of Halobacterium halobium were studied. The spectra of the all-trans forms were composed of two or more absorption bands. During incubation at 20 degrees C, an absorption band above 500 nm increased in intensity gradually at the expense of an absorption band in the shorter wavelength region with no isomerization of the chromophore. The longer wavelength species was shown to be the protonated form of the shorter wavelength species by changing the pH of the medium. Upon irradiation with blue light, the bandwidth of the spectrum became smaller with isomerization of the chromophore to its 13-cis form. Irreversible binding of protons on the membrane occurred during this process. The rate of the increase in the longer wavelength absorption band was especially low in the reaction with the all-trans form of retinal analogues having a bulky substituent at the para or meta positions of the phenyl ring. In contrast, the 13-cis isomer of aromatic retinal analogues gave a single absorption peak. The extent of the spectral shift upon binding to apopurple membranes was compared over a series of aromatic retinals, and the results were explained in terms of steric interactions of the chromophore with the protein.  相似文献   

15.
A Aharoni  M Ottolenghi  M Sheves 《Biochemistry》2001,40(44):13310-13319
It has previously been shown that, in mutants lacking the Lys-216 residue, protonated Schiff bases of retinal occupy noncovalently the bacteriorhodopsin (bR) binding site. Moreover, the retinal-Lys-216 covalent bond is not a prerequisite for initiating the photochemical and proton pump activity of the pigment. In the present work, various Schiff bases of aromatic polyene chromophores were incubated with bacterioopsin to give noncovalent pigments that retain the Lys-216 residue in the binding site. It was observed that the pigment's absorption was considerably red-shifted relative to the corresponding protonated Schiff bases (PSB) in solution and was sensitive to Schiff base linkage substitution. Their PSB pK(a) is considerably elevated, similarly to those of related covalently bound pigments. However, the characteristic low-pH purple to blue transition is not observed, but rather a chromophore release from the binding site takes place that is characterized by a pK(a) of approximately 6 (sensitive to the specific complex). It is suggested that, in variance with native bR, in these complexes Asp-85 is protonated and Asp-212 serves as the sole negatively charged counterion. In contrast to the bound analogues, no photocycle could be detected. It is suggested that a specific retinal-protein geometrical arrangement in the binding site is a prerequisite for achieving the selective retinal photoisomerization.  相似文献   

16.
Halobacterium halobium contains at least three retinal-containing pigments: bacteriorhodopsin, halorhodopsin, and a third rhodopsin-like pigment (tR) absorbing at approximately 590 nm, tR590. Illumination of tR590 gives rise to a very long-lived blue absorbing photoproduct, tR370. Using high-performance liquid chromatography we show that the chromophore of tR590 is primarily all-trans retinal and its conversion by light to tR370 causes the chromophore to isomerize primarily to the 13-cis conformation. Irradiation of the tR370 gives rise to a transient photoproduct absorbing at approximately 520 nm that decays back to the initial pigment tR590. In addition to all-trans retinal, the apomembrane of tR can also combine with 13-cis retinal but not with the 9- or 11-cis isomers.  相似文献   

17.
An analogue of all-trans retinal in which all-trans/13-cis isomerization is blocked by a carbon bridge from C12 to C14 was incorporated into the apoproteins of sensory rhodopsin I (SR-I) and sensory rhodopsin II (SR-II, also called phoborhodopsin) in retinal-deficient Halobacterium halobium membranes. The "all-trans-locked" retinal analogue forms SR-I and SR-II analogue pigments with similar absorption spectra as the native pigments. Blocking isomerization prevents the formation of the long-lived intermediate of the SR-I photocycle (S373) and those of the SR-II photocycle (S-II360 and S-II530). A computerized cell tracking and motion analysis system capable of detecting 2% of native pigment activity was used for assessing motility behavior. Introduction of the locked analogue into SR-I or SR-II apoprotein in vivo did not restore phototactic responses through any of the three known photosensory systems (SR-I attractant, SR-I repellent, or SR-II repellent). We conclude that unlike the phototaxis receptor of Chlamydomonas reinhardtii, which has been reported to mediate physiological responses without specific double-bond isomerization of its retinal chromophore (Foster et al., 1989), all-trans/13-cis isomerization is essential for SR-I and SR-II phototaxis signaling.  相似文献   

18.
To test structural and mechanistic proposals about bacteriorhodopsin, a series of analogues with single amino acid substitutions has been studied. Mutants in the proposed helix F of bacteriorhodopsin were chosen for investigation because of the probable interaction of this part of the protein with the retinal chromophore. Seven mutants of the bacteriorhodopsin gene were constructed by site-directed mutagenesis, and the gene products were expressed in Escherichia coli. The resulting mutant proteins were purified and assayed for their ability to interact with retinal in phospholipid/detergent micelles to form a bacteriorhodopsin-like chromophore. Four mutants, Ser-183----Ala, Tyr-185----Phe, Ser-193----Ala, and Glu-194----Gln, bound retinal to give pigments with absorption maxima approximately the same as the wild type. Three mutant opsins bound retinal to give chromophores that were blue-shifted relative to the wild type. Two Trp----Phe substitutions at positions 182 and 189 gave absorption maxima of 480 and 524 nm, respectively, and the mutant Pro-186----Leu gave a pigment with an absorption maximum of 470 nm. However, none of the amino acid substitutions eliminated the ability of the mutant bacteriorhodopsin to pump protons in response to illumination.  相似文献   

19.
Halobacterium halobium Flx mutants are deficient in bacteriorhodopsin (bR) and halorhodopsin (hR). Such strains are phototactic and the light signal detectors are two additional retinal pigments, sensory rhodopsins I and II (sR-I and sR-II), which absorb maximally at 587 and 480 nm, respectively. A retinal-deficient Flx mutant, Flx5R, overproduces sR-I-opsin and does not show any photochemical activity other than that of sR-I after the pigment is regenerated by addition of all-trans retinal. Using native membrane vesicles from this strain, we have resolved a new photointermediate in the sR-I photocycle between the early bathointermediate S610 and the later intermediate S373. The new form, S560, resembles the L intermediate of bR in its position in the photoreaction cycle, its relatively low extinction, and its moderate blue shift. It forms with a half-time of approximately 90 microseconds at 21 degrees C, concomitant with the decay of S610. Its decay with a half-time of 270 microseconds parallels the appearance of S373. From a data set consisting of laser flash-induced absorbance changes (300 ns, 580-nm excitation) measured at 24 wavelengths from 340 to 720 nm in a time window spanning 1 microsecond to 8 s we have calculated the spectra of the photocycle intermediates assuming a unidirectional, unbranched reaction scheme.  相似文献   

20.
The mechanism by which bacteriorhodopsin is activated following light absorption is not completely clear. We have detected protein conformational alterations following light absorption by retinal-based chromophores in the bacteriorhodopsin binding site by monitoring the rate of reduction-oxidation reactions of covalently attached spin labels, using EPR spectroscopy. It was found that the reduction reaction with hydroxylamine is light-catalyzed in the A103C-labeled pigment but not in E74C or M163C. The reaction is light-catalyzed even when isomerization of the C(13)=C(14) bond of the retinal chromophore is prevented. The reverse oxidation reaction with molecular oxygen is effective only in apomembrane derived from the mutant A103C. This reaction is light-accelerated following light absorption of the retinal oxime, which occupies the binding site. The light-induced acceleration is evident also in "locked" bacteriorhodopsin in which isomerization around the C(13)=C(14) bond is prevented. It is evident that the chromophore-protein covalent bond is not a prerequisite for protein response. In contrast to the case of the retinal oxime, a reduced C=N bond A103C-labeled pigment did not exhibit acceleration of the oxidation reaction following light absorption. Acceleration was observed, however, following substitution of the polyene by groups that modify the excited state charge delocalization. It is suggested that protein conformational alterations are induced by charge redistribution along the retinal polyene following light absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号