首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several types of striped patterns have been reported to cause adverse sensations described as visual discomfort. Previous research using op-art-based stimuli has demonstrated that spurious eye movement signals can cause the experience of illusory motion, or shimmering effects, which might be perceived as uncomfortable. Whilst the shimmering effects are one cause of discomfort, another possible contributor to discomfort is excessive neural responses: As striped patterns do not have the statistical redundancy typical of natural images, they are perhaps unable to be encoded efficiently. If this is the case, then this should be seen in the amplitude of the EEG response. This study found that stimuli that were judged to be most comfortable were also those with the lowest EEG amplitude. This provides some support for the idea that excessive neural responses might also contribute to discomfort judgements in normal populations, in stimuli controlled for perceived contrast.  相似文献   

2.
1. The various types of eye movement exhibited by the cyclopean eye of Daphnia pulex were studied using high speed motion photography. 2. This rudimentary eye, which consists of only 22 ommatidia, can move through approximately 150 degrees in the sagittal plane and 60 degrees in the horizontal plane. 3. Four classes of eye movement were found: (1) a high speed tremor at 16 Hz with an amplitude of 3-4 degrees, which resembles physiological nystagmus, (2) a slow rhythmic scanning movement at 4 Hz, and 5-6 degrees amplitude, (3) large fast eye movements similar to saccadic eye movements and (4) optokinetic nystagmus produced by moving striped patterns. 4. Where the fast tremor occurred concurrently with the slow rhythmic scan, a Fourier analysis revealed that the former was the fourth harmonic of the latter.  相似文献   

3.
Fallah M  Reynolds JH 《PloS one》2012,7(5):e37888
Dorsal stream areas provide motion information used by the oculomotor system to generate pursuit eye movements. Neurons in these areas saturate at low levels of luminance contrast. We therefore hypothesized that during the early phase of pursuit, eye velocity would exhibit an oculomotor gain function that saturates at low luminance contrast. To test this, we recorded eye movements in two macaques trained to saccade to an aperture in which a pattern of dots moved left or right. Shortly after the end of the saccade, the eyes followed the direction of motion with an oculomotor gain that increased with contrast before saturating. The addition of a second pattern of dots, moving in the opposite direction and superimposed on the first, resulted in a rightward shift of the contrast-dependent oculomotor gain function. The magnitude of this shift increased with the contrast of the second pattern of dots. Motion was nulled when the two patterns were equal in contrast. Next, we varied contrast over time. Contrast differences that disappeared before saccade onset biased post-saccadic eye movements at short latency. Changes in contrast occurring during or after saccade termination did not influence eye movements for approximately 150 ms. Earlier studies found that eye movements can be explained by a vector average computation when both targets are equal in contrast. We suggest that this averaging computation may reflect a special case of divisive normalization, yielding saturating contrast response functions that shift to the right with opposed motion, averaging motions when targets are equated in contrast.  相似文献   

4.
In the animal kingdom, camouflage refers to patterns that help potential prey avoid detection. Mostly camouflage is thought of as helping prey blend in with their background. In contrast, disruptive or dazzle patterns protect moving targets and have been suggested as an evolutionary force in shaping the dorsal patterns of animals. Dazzle patterns, such as stripes and zigzags, are thought to reduce the probability with which moving prey will be captured by impairing predators'' perception of speed. We investigated how different patterns of stripes (longitudinal—i.e., parallel to movement direction–and vertical–i.e., perpendicular to movement direction) affect the probability with which humans can hit moving objects and if differences in hitting probability are caused by a misperception of speed. A first experiment showed that longitudinally striped objects were hit more often than unicolored objects. However, vertically striped objects did not differ from unicolored objects. A second study examining the link between perceived speed and hitting probability showed that longitudinally and vertically striped objects were both perceived as moving faster and were hit more often than unicolored objects. In sum, our results provide evidence that striped patterns disrupt the perception of speed, which in turn influences how often objects are hit. However, the magnitude and the direction of the effects depend on additional factors such as speed and the task setup.  相似文献   

5.
A powerful effect resembling an afterimage is demonstrated on the pathway to the motion-sensitive neuron H1. This effect is independent of the locally generated gain control described in an earlier paper (Maddess & Laughlin 1985, Proc. R. Soc. Lond. B 225, 251). The afterimage, produced across the eye by a stationary pattern, causes the sensitivity to movement to be different according to the local stimulus history, and the effects of low-contrast (0.1) patterns, presented for as little as a few hundred milliseconds, remain for up to 2 s. Moving patterns interact with the afterimage to modulate the spike rate of H1. The afterimage increases with contrast but saturates at contrasts above 0.5. Low spatial frequencies generate afterimages less effectively than moderate ones; this result indicates that the afterimage process could lie at, or after, lateral inhibition between tonic units. This is supported by the fact that the altered sensitivity profiles generated by single bright and dark vertical bars initially resemble Mach bands. However, this character alters as the afterimage decays, and the depression of H1's response to moving bright stimuli, produced by the afterimage of a dark bar, continues to grow for up to 1 s after the adapting bar is removed. A short-lived (0.5 s) reduction of H1's directional selectivity accompanies strong afterimage formation. All these factors, especially the saturation at low contrasts and the spatial frequency tuning, rule out light adaptation by photoreceptors as the afterimage source. Luminances used were also low enough to exclude influence by the pupil mechanism. Lastly, responses to patterns that are occasionally jumped by large or small distances are broadened by stimuli that produce an afterimage. Responses to small displacements have previously been described as 'velocity impulse responses' (Srinivasan 1983, Vision Res. 23, 659; Zaagman et al. 1983, IEEE Trans. SMC 13, 900) and so the response broadening (stimulus blurring) can be taken as a reduction of the fly's temporal resolution of moving objects. Previously reported work shows that afterimages seen in humans and the effect reported here act over the same range of temporal frequencies rather than retinal drift speeds. This may suggest an important role for afterimage-like effects in the processing of the low temporal frequency components of moving images. Certainly, the fly's afterimage system reduces the visibility of moving objects within patches of an image that, have on average, contained slowly varying motion signals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The human optokinetic response to a horizontally moving striped pattern surrounding the subject was investigated under quasi-open and closed loop conditions. Open loop conditions were produced by the addition of an external signal from measured slow phase eye velocity to stripe velocity. A comparison of open and closed loop responses to step and sinusoidal changes of stripe velocity indicates that the central nervous system controlling slow phase optokinetic following can be described as a simple first order lag (Ka/(s+a)) where K is 4.7 and the time constant, 1/a, is 1.25 s.  相似文献   

7.
Visually evoked potentials were used to determine the spatial contrast response function of the visual system and the visual acuity of the pigeon. The spatial contrast response describes the relationship between the contrast in a pattern of vertical stripes, whose luminance is a function of position, and the amplitude of the visually evoked response at various spatial frequencies for a given temporal frequency (pattern reversal frequency); it indicates how particular spatial frequencies are attenuated in the visual system. The visually evoked responses were recorded using monopolar stainless steel electrodes inserted into the stratum griseum superficiale of the optic tectum; the depth of penetration was determined on the basis of a stereotactic atlas. The stimulus patterns were generated on a video monitor placed 75 cm in front of the animal's eye perpendicular to the optic axis. The spatial contrast response function measured at 10% contrast and 0.5 Hz reversal frequency shows a peak at a spatial frequency of 0.5 c/deg, corresponding to 1 degree of visual angle, and decreases progressively at higher spatial frequencies. The high-frequency limit (cut-off frequency) for resolution of sinusoidal gratings, estimated from the contrast response function, is 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc.  相似文献   

8.
The 'colour-shading effect' describes the phenomenon whereby a chromatic pattern influences perceived shape-from-shading in a luminance pattern. Specifically, the depth corrugations perceived in sinusoidal luminance gratings can be enhanced by spatially non-aligned, and suppressed by spatially aligned sinusoidal chromatic gratings. Here we examine whether colour contrast can influence perceived shape in patterns that combine shape-from-shading with shape-from-texture. Stimuli consisted of sinusoidal modulations of texture (defined by orientation), luminance and colour. When the texture and luminance modulations were suitably combined, one obtained a vivid impression of a corrugated depth surface. The addition of a colour grating to the texture-luminance combination was found to enhance the impression of depth when out-of-phase with the luminance modulation, and suppress the impression of depth when in-phase with the luminance modulation. The degree of depth enhancement and depth suppression was approximately constant across texture amplitude when measured linearly. In the absence of the luminance grating however, the colour grating had no phase-dependent affect on perceived depth. These results show that colour contrast modulates the contribution of shading to perceived shape in combined shading and texture patterns.  相似文献   

9.
The Limulus retina responds as a linear system to light stimuli which vary moderately about a mean level. The dynamics of such a system may conveniently be summarized by means of a spatiotemporal transfer function, which describes the response of the system to moving sinusoidal gratings. The response of the system to an arbitrary stimulus may then be calculated by adding together the system's responses to suitably weighted sinusoidal stimuli. We have measured such a spatiotemporal transfer function for the Limulus eye. We have then accurately predicted, in a parameter-free calculation, the eye's response to various stimulus patterns which move across it at several different velocities.  相似文献   

10.
Oculomotor responses to body rotation were investigated in subjects standing with the eyes closed. A rotatable platform was used to provide body rotation relative to the space-stationary head or upper part of the body (fixation of the head; the head and the shoulders; and the head, the shoulders, and the pelvis). A slow rotation of the body about the longitudinal axis by ±6.5° within 10–150 s evoked an illusion of the upper part of the body turning in space, while the moving footplate was perceived as stationary in space. This illusion was accompanied by marked eye movements in the direction of the illusory rotation. In subjects grasping a rigid ground-based handle, the perception of body movements corresponded to the actual rotation of body parts. In this case, the amplitude of eye movements was substantially lower. It was concluded that the eye movement pattern depends not only on the actual relative movement of the body segments but also on the perception of this movement relative to the extrapersonal space.  相似文献   

11.
The dynamics of the Limulus retina may be well described by the spatiotemporal transfer function, which measures the response of the eye to moving sinusoidal gratings. We consider a model for this system, which incorporates an excitatory generator potential, and self- and lateral inhibitory processes. Procedures are described which allow estimation of parameters for the model consistent with the empirical transfer function data. Transfer functions calculated from the model show good agreement with laboratory measurements, and may be used to predict accurately the response of the eye to arbitrary moving stimuli. The model allows convenient interpretation of the transfer function measurements in terms of physiological processes which underly the response of the Limulus retina.  相似文献   

12.
Distribution patterns of tree species in a Malaysian tropical rain forest   总被引:5,自引:0,他引:5  
Abstract. Spatial patterns of tree species were studied in a 50-ha tropical rain forest plot in the Pasoh forest, Malaysia. This forest is characterized by a high diversity and very high number of rare species. Out of the 745 species occurring with > five individuals, 80.4 % had an aggregated distribution, 19.5% were randomly distributed and one species had a regular distribution. The spatial patterns of rare vs. common species, juvenile vs. adult trees, and coarse vs. fine scales were compared. Rare species are generally less aggregated than common ones and most of the randomly distributed species are rare. Spatial patterns shift from high clumping to looser intensity or random distribution when moving from juveniles to adults for the same species. No adult tree species display a regular pattern, however. Regular distributions were rarely found; this is probably due to intraspecific competition at a local scale. There is a negative correlation between per capita death rate and population density. This study suggests that the Pasoh forest and its high diversity are subjected to multiple controlling factors, e.g., topography, spacing effect, density-dependent processes and species rarity. The importance of any factor changes across spatial and temporal scales.  相似文献   

13.
The present report considers goal directed human saccadic eye movements. It addresses the question how a given perceived target excentricity is transformed into the innervation pattern that creates the saccade to the target. More specifically, it investigates whether this pattern is an appropriately selected preprogram or whether it is continuously controlled by a local feedback loop that compares a non-visual eye position signal to the perceived target excentricity (a visual signal would be too slow). To this end, the relation between the accuracy of saccades aimed at a given target and their velocity and duration was examined. Duration and velocity were found to vary by as much as 60% while the amplitude showed no related variation and had an almost constant accuracy of about 90%. By administrating diazepam, the variability of saccade duration and velocity could be further increased, but still the amplitude remained almost constant. These results favour the hypothesis that saccadic innervation is controlled by a local feedback loop.This investigation was supported by Deutsche Forschungsgemeinschaft, SFB 70, Gruppe Ulm  相似文献   

14.
Human observers see a single mixed color (yellow) when different colors (red and green) rapidly alternate. Accumulating evidence suggests that the critical temporal frequency beyond which chromatic fusion occurs does not simply reflect the temporal limit of peripheral encoding. However, it remains poorly understood how the central processing controls the fusion frequency. Here we show that the fusion frequency can be elevated by extra-retinal signals during smooth pursuit. This eye movement can keep the image of a moving target in the fovea, but it also introduces a backward retinal sweep of the stationary background pattern. We found that the fusion frequency was higher when retinal color changes were generated by pursuit-induced background motions than when the same retinal color changes were generated by object motions during eye fixation. This temporal improvement cannot be ascribed to a general increase in contrast gain of specific neural mechanisms during pursuit, since the improvement was not observed with a pattern flickering without changing position on the retina or with a pattern moving in the direction opposite to the background motion during pursuit. Our findings indicate that chromatic fusion is controlled by a cortical mechanism that suppresses motion blur. A plausible mechanism is that eye-movement signals change spatiotemporal trajectories along which color signals are integrated so as to reduce chromatic integration at the same locations (i.e., along stationary trajectories) on the retina that normally causes retinal blur during fixation.  相似文献   

15.
(1) Motion onset and offset visual evoked potentials (VEPs) were recorded in normal human subjects using a unidimensional noise pattern moving at 1, 8 and 64°/s. The maximum N1-P1 amplitude of the motion onset response was obtained when using a fine noise pattern (maximum energy at 5.2 cpd) moving at 8°/s. (2) At a velocity of 8°/s, the motion onset response (fine pattern, 0.70 contrast) showed a morphology similar to the pattern disappearance response. Both at a lower (1°/s) and a higher velocity (64°/s) the N1-P1 amplitude of the motion onset complex was significantly reduced. The latency of the motion onset response (8°/s) and the pattern disappearance complex were significantly different. (3) The effect of lowering the spatial content of the noise pattern on the amplitude of the motion onset response was different for the 3 velocities tested: the largest effect was at the lower velocity of 1°/s; there was no similar effect on the pattern disappearance response. (4) With decreasing contrast, the N1-P1 amplitude of the motion onset response at 8°/s decreased, but this reduction in amplitude was much less than that of the disappearance response. The contrast dependency of the motion onset complex was identical for binocular and monocular recordings. (5) Increasing the motion duration or the duration of the interstimulus interval did not alter the general morphology of the motion response.  相似文献   

16.
Summary In the fly,Calliphora erythrocephala, visual stimuli presented in an asymmetrical position with respect to the fly elicit roll or tilt movements of the head by which its dorsal part is moved towards the light areas of the surroundings (Figs. 4–7). The influence of passive body roll and tilt (gravitational stimulus) on the amplitude of these active head movements was investigated for two types of visual stimuli: (1) a dark hollow hemisphere presented in different parts of the fly's visual field, and (2) a moving striped pattern stimulating the lateral parts of one eye only.The response characteristics of the flies in the bimodal situation in which the gravitational stimulus was paired with stimulation by the dark hollow hemisphere can be completely described by the addition of the response characteristics for both unimodal situations, i.e. by the gravity-induced and visually induced characteristics (Figs. 8, 9). Therefore, the stimulus efficacy of the dark hollow hemisphere is independent of (=invariant with respect to) the flies' spatial position. The advantage of this type of interaction between gravity and visual stimulation for the control of body posture near the horizontal is discussed.In contrast, the efficacy of moving patterns depends on (=non-invariant with respect to) the spatial position of the walking fly. Regressive pattern movements exhibit their stronger efficacy with respect to progressive ones only when the gravity receptor system of the legs is stimulated. The stronger efficacy of downward vs upward movements can only be demonstrated when the flies are walking horizontally, independently of whether the leg gravity receptor system is stimulated by gravity or not (Fig. 10).The results are discussed with respect (1) to the invariance and non-invariance of the efficacy of visual stimuli with respect to the direction of the field of gravity, (2) to the formation of reference lines by the gravitational field which are used by the walking fly to determine the orientation of visual patterns, and (3) to the possible location of the underlying convergence between gravitationally and visually evoked excitation. As all types of head responses occur only in walking flies, we also discussed the possible influences of some physiological processes like arousal, proprioceptive feedback during walking and various peripheral sensory inputs on the performance of behavioural responses in the fly (Fig. 11).  相似文献   

17.
The optokinetik reactivity of lizards (Calotes versicolor Daud., Agamidae, Squamata) varies spontaneously within seconds. The animals follow the sinusoidal movement of a striped cylinder with head and eyes. Thereby the line of sight may follow exactly the pattern movement without angular slippage, or a slippage of various degree happens, or the animal does even not react at all. The optokinetic reactivity varies continuously and not stepwise. Both eyes may move independently. Accelerated smooth eye movements which overtake the speed pattern movement were observed. In optokinetic reactions the eyes take the bigger part of the angular movement than the head; in cases of vestibular stimulation the reverse is observed concerning the amplitude of the compensatory countermovement. Similar effects of variable optokinetic reactivity in other animals and in man depending on attention are discussed.  相似文献   

18.
The transfer of relative temporal representations was assessed in a series of three experiments. In each experiment, rats (Rattus norvegicus) received one set of conditioned stimulus (CS) and intertrial interval (ITI) durations in Phase 1 and another set in Phase 2. The ratio between the CS and ITI intervals was either changed or maintained across phases. On the hypothesis that relative temporal representations are learned, groups receiving maintained temporal ratios across phases were expected to display greater change in responding upon encountering the new intervals. When the CS duration decreased across phases, maintaining the temporal ratio did lead to greater change in Day 1 of Phase 2 towards the final pattern of responding. However, when the CS increased across phases, maintaining the temporal ratio across phases did not facilitate adjustment to the new intervals, suggesting that extinction of previously reinforced times induced new learning. These results provide evidence that under some conditions, relative relationships in temporal maps may survive transformation-of-scale, like relative relationships in spatial maps.  相似文献   

19.
How repeating striped patterns arise across cellular fields is unclear. To address this we examined the repeating pattern of Stripe (Sr) expression across the parasegment (PS) in Drosophila. This pattern is generated in two steps. First, the ligands Hedgehog (Hh) and Wingless (Wg) subdivide the PS into smaller territories. Second, the ligands Hh, Spitz (Spi), and Wg each emanate from a specific territory and induce Sr expression in an adjacent territory. We also show that the width of Sr expression is determined by signaling strength. Finally, an enhancer trap in the sr gene detects the response to Spi and Wg, but not to Hh, implying the existence of separable control elements in the sr gene. Thus, a distinct inductive event is used to initiate each element of the repeating striped pattern.  相似文献   

20.
Summary The functional properties of the processing of visual information by the complex eye of Limulus was studied. The spatial distribution of activity that results in the optic nerve when the Limulus eye is exposed to a stationary optical pattern depends upon the transfer characteristics of two subsystems: the dioptric apparatus and the nervous interactions comprising the lateral inhibition system. — The transfer characteristic of the dioptric apparatus is determined by the sensitivity distribution function of single ommatidia. This distribution was measured and found to be approximately of Gauss-function type. The sensitivity falls off to 1/e at a distance of one ommatidium; thus the visual fields of adjacent ommatidia strongly overlap. As a consequence of the overlap, amplitudes of the spatial Fourier components, of which the brightness distribution of the optical surround is made up, are more and more reduced with increasing frequency in the intensity distribution on the receptor mosaic. The amplitude of the spatial frequency 1/=0,25 ( in units of interommatidial distance) is reduced to half of the maximum value, which is attained at zero frequency. It is shown that the amplitude frequency characteristic of the sensitivity distribution function has no zeros, which means that no loss of optical information results from overlap of visual fields. Thus the resolving power of the dioptric apparatus is limited only by the number of receptors per unit area. — The transfer characteristic of the lateral inhibition system in the Limulus eye depends on the distribution of the inhibitory coefficients around the individual receptors. This distribution function was determined from excitatory responses in the optic nerve elicited by a spatial light intensity step function on the receptor mosaic. It is found that this distribution is also Gaussian in form, but decays to 1/e at a distance of eight to nine ommatidia along the major axis of the eye. The average value of the inhibitory coefficients between adjacent ommatidia was found to be 0,025. The amplitude frequency response of the inhibitory system is constant for high spatial frequencies down to 1/=0,1 while amplitudes of lower frequency sinusoids are reduced down to nearly half of the maximum value at frequency zero. The amplitude frequency characteristic of the inhibitory system ensures a one to one correspondence between the intensity distribution on the receptor mosaic and the excitation distribution in the optic nerve. The overall transfer characteristic of the eye is derived from the transfer characteristics of the dioptric apparatus and the inhibitory system. This characteristic is of bandpass type with a maximum amplitude response at a frequency of 1/=0,07. The overall transfer characteristic was independently confirmed in a separate experiment. The nature of the overall transfer characteristic shows that the inhibitory system does not exactly correct for the overlap of the visual fields of single ommatidia, which in principal the system could do if the distributions of inhibitory coefficients and ommatidia sensitivity were equal. The overall transfer characteristic of the Limulus eye garantees a one to one correspondence between patterns in the optical surround and excitation distributions in the optic nerve. — The average values of the inhibitory coefficients derived from these experiments are at least a factor ten smaller than those determined directly by other investigators. Possible explanations of this discrepency are discussed. — In a separate chapter the overall transfer characteristic for eyes submerged in water is described. It was found that this characteristic does not differ from that determined in air for the eye region which was investigated in the experiments. This result is explained by two properties of the eye which are dependent on the refractive index of the surround medium and whose influences cancel each other: the visual fields of ommatidia are reduced under water, while the divergence angles between the optical axes of adjacent ommatidia also diminish.

This research was supported in part by the United States Air Force under Grant No. AF-EOAR-62-41 and monitored by the European Office, Office of Aerospace Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号