首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Studies were completed to characterize the cytotoxic and biochemical interaction of methotrexate (MTX) and 6-thioguanine (6-TG). Pretreatment of L1210 leukemia cells for 3 hr with MTX substantially enhanced the cytotoxicity of 6-TG. The LD90 of 6-TG in cells pretreated with 1μM MTX was 0.9pM, compared to an LD90 of 800 pM when the two drugs were given concurrently and an LD90 of 30 pM resulted with 6-TG alone. HPLC analysis of intracellular metabolites demonstrated an increased conversion of 6-TG to 6-TG-nucleotides in cells pretreated with MTX. A marked enhancement of 6-TG incorporation into RNA also was noted (MTX→6-TG: 350 fmol/μg RNA vs 6-TG: 98 fmol/μg RNA). However, there was a suppression of 6-TG incorporation into DNA when cells were pretreated with MTX (MTX→6-TG: 170 fmol/μg DNA vs 6-TG: 690 fmol/μg DNA). These results suggest that: 1) an enhancement of 6-TG antileukemic activity can be obtained with MTX pretreatment, and 2) the enhancement of 6-TG cytotoxicity following MTX exposure is not associated with 6-TG incorporation into DNA, but rather with incorporation of 6-TG into RNA. This drug sequence may be beneficial in the clinical treatment of leukemia.  相似文献   

3.
Chinese hamster V79 cells were exposed to 10(-6) mol liter-1 2-aminopurine (2-AP) or 6-thioguanine (6-TG) for 18 or 40 h, and then tested for sensitivity to X rays, heat, or a combined treatment of heat and radiation. Cells exposed to 6-TG were sensitive to X rays, while those treated with 2-AP showed little or no sensitivity. At 42 degrees and 45 degrees C moderate sensitization resulted from 2-AP treatment, with greater sensitization resulting from treatment with 6-TG. Combined heat and X-ray treatment of cells exposed to 2-AP yielded sensitization similar to heat treatment alone, while cells exposed to 6-TG before receiving the combined treatment showed a degree of sensitization greater than that due to either treatment by itself but less than that of the two treatments added together. Uptake of the purine analogues into cellular DNA was measured by high-pressure liquid chromatography. At the 1% detection level, after either an 18- or a 40-h exposure of cells to 10(-6) mol liter-1 2-AP or 6-TG, no base substitution was found. Analysis of cell cycle distributions by flow cytometry revealed only very small changes following exposure of cells to the purine analogues.  相似文献   

4.
Calcium ion-dependent proliferation of L1210 cells in culture   总被引:2,自引:0,他引:2  
Maximum growth of L1210 cells in culture required the presence of free extracellular calcium ions. Reducing the free extracellular calcium ion concentration with EGTA served to decrease the growth rate of the cells. The decrease in cell growth was not due to cell death but rather due to the "pile-up" of the L1210 cells in the GO/Gl phase of the cell cycle. With the readdition of excess calcium ions, there was a lag period of 3 to 6 hours before the L1210 cells initiated DNA synthesis or transited from the G0/G1 phase to S-phase. Cells enriched for S and G2/M phase by elutriation and which were incubated in EGTA-containing culture medium, continued through the cell cycle and were blocked in GO/Gl. These data indicate that the proliferation of L1210 cells in culture requires a calcium ion-dependent process to allow movement from the G0/G1 to S-phase of the cell cycle.  相似文献   

5.
The P388 lymphocytic leukemia and the L1210 lymphoid leukemia are used as test systems for putative cytotoxic drugs. These leukemias are also used to investigate the perturbation of cell cycle progression of various chemical compounds in more detail. There is little information on the normal growth kinetics in vivo of these leukemias. In the present report we therefore present the results from growth kinetic studies of P388 and L1210 leukemic cells growing in ascites form in mice. We used 3H-TdR autoradiography, DNA flow cytometry and the stathmokinetic method. During exponential growth both leukemias showed a growth fraction of unity. Whereas no significant cell loss was observed during the early growth phase of P388 cells, cell loss was indicated by a discrepancy between potential and actual doubling times during exponential growth of L1210 cells. During the phase of growth retardation, the proportion of G1 and G2 cells increased at the expence of a reduced S phase fraction in the P388 leukemia, whereas only small changes in cell cycle distributions were seen with time after inoculation of L1210 cells. An increasing discrepancy in the reduction of the S phase fraction and the 3H-TdRLI was seen in the P388 cells with time after inoculation. Thus, a majority of P388 cells with S phase DNA content were unlabelled during the late phase of growth restriction, indicating resting cells in S phase. A good correlation was found between the 3H-TdR LI and S phase fraction throughout the life history of L1210 cells, revealing considerable differences in in vivo growth kinetics between the two leukemias. Such differences should be considered when evaluating test results.  相似文献   

6.
本文用双参数FCM技术,对同一个细胞的DNA和RNA含量进行相关测量,比较了ACM B对小鼠L_(1210)白血病细胞周期和RNA含量的影响.结果发现在一次给药后8小时可导致早、中期S的积累,并抑制S期细胞的DNA合成;到24小时DNA合成恢复正常,并进入G_2期,但由于G_2期细胞进入M期受阻,造成G_2期细胞的积累,这时被阻断在G_2期的细胞RNA含量显著增加,形成正不平衡生长,而给药剂量较大的实验组(1/1.5LD_(50))S期细胞的RNA含量不随着DNA含量的增加而增加,形成负不平衡生长,ACM A和ACM B对体内Li_(210)细胞周期作用相同.  相似文献   

7.
A number of antagonists of nucleotide metabolism with anti-cancer activity affect the de novo purine pathway. To determine the biochemical mechanisms of cytotoxicity of these drugs, assay procedures have been developed for measurement of the levels of intermediates proximal to IMP in the pathway for de novo purine biosynthesis in mouse L1210 leukemia cells. Purine precursors have been synthesized in vitro from [14C]glycine using enzymes from chicken liver. These 14C-labeled intermediates have been used as marker compounds to define retention times for metabolites of leukemia cells separated by HPLC and the chromatographic mobilities of these intermediates after two-dimensional thin-layer chromatography. These new chromatographic procedures have been used in combination to determine the steady-state concentrations for purine precursors in mouse L1210 leukemia cells in the exponential phase of growth: N-formylglycineamide ribotide (16 microM); N-formylglycineamidine ribotide (4.7 microM); 5-aminoimidazole ribotide (4.0 microM); 4-carboxy-5-aminoimidazole ribotide (0.46 microM); N-succino-5-aminoimidazole-4-carboxamide ribotide (11 microM); 5-aminoimidazole-4-carboxamide ribotide (16 microM); 5-formamidoimidazole-4-carboxamide ribotide (2.7 microM); and IMP (57 microM). The metabolic effects of tiazofurin (25 microM) upon mouse L1210 leukemia cells growing in culture define a "metabolic crossover point" at the reaction catalyzed by IMP dehydrogenase (EC 1.1.1.205) which confirms previous reports of inhibition of this enzyme.  相似文献   

8.
The therapeutic effect of the thiopurines, 6-thioguanine (6-TG), 6-mercaptopurine, and its prodrug azathioprine, depends on the incorporation of 6-TG into cellular DNA. Unlike normal DNA bases, 6-TG absorbs UVA radiation, and UVA-mediated photochemical damage of DNA 6-TG has potentially harmful side effects. When free 6-TG is UVA irradiated in solution in the presence of molecular oxygen, reactive oxygen species are generated and 6-TG is oxidized to guanine-6-sulfonate (G(SO3)) and guanine-6-thioguanine in reactions involving singlet oxygen. This conversion is prevented by antioxidants, including the dietary vitamin ascorbate. DNA G(SO3) is also the major photoproduct of 6-TG in DNA and it can be selectively introduced into DNA or oligonucleotides in vitro by mild chemical oxidation. Thermal stability measurements indicate that G(SO3) does not form stable base pairs with any of the normal DNA bases in duplex oligonucleotides and is a powerful block for elongation by Klenow DNA polymerase in primer extension experiments. In cultured human cells, DNA damage produced by 6-TG and UVA treatment is associated with replication inhibition and provokes a p53-dependent DNA damage response.  相似文献   

9.
Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.  相似文献   

10.
Nitracrine (Ledakrin) is an antitumor drug which is activated by cellular enzymes and binds covalently to DNA. Previous studies have shown that covalent binding and crosslinking of DNA is associated with the cytotoxic and antitumor activities of this compound. In this study, cell cycle perturbations, effects on DNA synthesis and the cell death process initiated by Nitracrine were studied in murine leukemia L1210 cells. We show that exposure of L1210 cells to Nitracrine at the IC99 concentration delayed progression through the S phase and transiently arrested cells in G2/M as found by flow cytometry. Higher drug concentration (2 × IC99) inhibited cell cycle progression in the S phase and induced rapid cell death. Both studied concentrations of the drug produced different effects on DNA synthesis as determined by bromodeoxyuridine incorporation, with a delay in the S phase progression at EC99 concentration and irreversible arrest in early S phase at the higher dose (2 × IC99). At both concentrations of Nitracrine cell death occurred preferentially in the S phase as revealed by the TUNEL assay. When cells treated with the drug for 4 hours were post-incubated in the presence of 1 mM caffeine this led to rapid cell death and suppression of the G2 arrest. This was associated with a about 10-fold increase in the cytotoxicity of Nitracrine. Similar effects were observed for another DNA crosslinking agent, cis-platinum, and to a lesser extent, for DNA topoisomerase I inhibitor, camptothecin. Together, our studies show that suppression of G2 arrest induced by Nitracrine greatly enhances its cytotoxicity toward L1210 cells.  相似文献   

11.
We had earlier shown that human foetal epithelial cells (WISH), growth-inhibited by interferon gamma (IFNgamma), were reversibly detained at a point prior to DNA synthesis. In the present study, we determined the window of action of IFNgamma in the G1 phase duration and the exact point of detention of WISH cells in cell cycle progression with respect to the known points of detention by the inhibitors of DNA replication initiation (aphidicolin and carbonyl diphosphonate) and of activation of replication protein A (6-dimethylaminopurine), of which RPA activation being the earlier event compared to DNA replication initiation in cell cycle progression. WISH cells, which were released from IFNgamma-induced arrest, permeabilised and exposed independently to these inhibitors show that IFNgamma detains WISH cells prior to initiation of DNA synthesis. Further, exposure of IFNalpha-synchronized (at G0/G1) or mimosine-synchronized (at G1/S) WISH cells to IFNgamma, which was added at different time points post-release from the synchronizing agent, showed that the cells were promptly responsive to the growth inhibitory action of IFNgamma only during the first 11h in G1 phase. Taken together, these results suggest that IFNgamma inhibits growth of WISH cells by detaining them at a point prior to initiation of DNA synthesis and that the IFN acts within the first 11h in G1 phase of the cell cycle.  相似文献   

12.
The cytoplasm of Saccharomyces cerevisiae contains two major classes of protein-encapsulated double-stranded ribonucleic acids (dsRNA's), L and M. Replication of L and M dsRNA's was examined in cells arrested in the G1 phase by either alpha-factor, a yeast mating pheromone, or the restrictive temperature for a cell cycle mutant (cdc7). [3H]uracil was added during the arrest periods to cells prelabeled with [14C]uracil, and replication was monitored by determining the ratio of 3H/14C for purified dsRNA's. Like mitochondrial deoxyribonucleic acid, both L and M dsRNA's were synthesized in the G1 arrested cells. The replication of L dsRNA was also examined during the S phase, using cells synchronized in two different ways. Cells containing the cdc7 mutation, treated sequentially with alpha-factor and then the restrictive temperature, enter a synchronous S phase when transferred to permissive temperature. When cells entered the S phase, synthesis of L dsRNA ceased, and little or no synthesis was detected throughout the S phase. Synthesis of L dsRNA was also observed in G1 phase cells isolated from asynchronous cultures by velocity centrifugation. Again, synthesis ceased when cells entered the S phase. These results indicate that L dsRNA replication is under cell cycle control. The control differs from that of mitochondrial deoxyribonucleic acid, which replicates in all phases of the cell cycle, and from that of 2-micron DNA, a multiple-copy plasmid whose replication is confined to the S phase.  相似文献   

13.
Because of the lack of specific molecular targeted therapies, triple-negative breast cancer (TNBC) has high tumour recurrence and metastasis rates. It is urgent to develop novel chemotherapeutic strategies to improve patient survival. DNA damaging agents have been shown to sensitize cancer to genotoxic chemotherapies. We first found that 6-thioguanine (6-TG) can activate the NF-кB signalling pathway. Our results showed that NF-кB signalling was reduced when cells were treated with 6-TG/disulfiram (DSF)/Cu. DSF/Cu enhanced the 6-TG-mediated inhibition of proliferation. 6-TG/DSF/Cu inhibited cell cycle progression, causing cell cycle arrest in the S phase and G2/M phase. Moreover, the combined effect of 6-TG and DSF/Cu induced apoptosis, and either agent alone was able to induce apoptosis. The accumulation of γH2A indicated that DSF/Cu increased the DNA damage induced by 6-TG. Combined treatment with 6-TG and DSF/Cu synergistically reduced the levels of both phosphorylated and total ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR), suggesting that DSF/Cu promoted 6-TG-induced DNA damage by suppressing ATR protein kinases, therefore enhancing cell apoptosis. In conclusion, we demonstrate that the combination of 6-TG and DSF/Cu exerted a significant synergistic antitumour effect on human TNBC in vitro and in vivo by enhancing DNA damage and disrupting DNA damage checkpoints. We propose that this combination therapy could be a novel strategy for the treatment of TNBC.  相似文献   

14.
The DNA of patients taking immunosuppressive and anti-inflammatory thiopurines contains 6-thioguanine (6-TG) and their skin is hypersensitive to ultraviolet A (UVA) radiation. DNA 6-TG absorbs UVA and generates reactive oxygen species that damage DNA and proteins. Here, we show that the DNA damage includes covalent DNA-protein crosslinks. An oligonucleotide containing a single 6-TG is photochemically crosslinked to cysteine-containing oligopeptides by low doses of UVA. Crosslinking is significantly more efficient if guanine sulphonate (G(SO3))--an oxidized 6-TG and a previously identified UVA photoproduct--replaces 6-TG, suggesting that G(SO3) is an important reaction intermediate. Crosslinking occurs via oligopeptide sulphydryl and free amino groups. The oligonucleotide-oligopeptide adducts are heat stable but are partially reversed by reducing treatments. UVA irradiation of human cells containing DNA 6-TG induces extensive heat- and reducing agent-resistant covalent DNA-protein crosslinks and diminishes the recovery of some DNA repair and replication proteins from nuclear extracts. DNA-protein crosslinked material has an altered buoyant density and can be purified by banding in cesium chloride (CsCl) gradients. PCNA, the MSH2 mismatch repair protein and the XPA nucleotide excision repair (NER) factor are among the proteins detectable in the DNA-crosslinked material. These findings suggest that the 6-TG/UVA combination might compromise DNA repair by sequestering essential proteins.  相似文献   

15.
The diasteromers of 5,10-dideaza-5,6,7,8-tetrahydrofolate (DDATHF) differing in chirality about carbon 6 were resolved and studied as inhibitors of folate-dependent processes in mouse leukemia cells. Both diastereomers of DDATHF were found to be potent inhibitors of leukemia cell growth due to effects on de novo purine synthesis. Cell growth inhibition by these compounds was prevented by 5-formyltetrahydrofolate in a dose-dependent manner. This indicated that the effects of the DDATHF diastereomers were due to inhibition of folate-dependent processes. Metabolite reversal experiments indicated that 5'-phosphoribosylglycinamide formyltransferase was the major site of action of these compounds in mouse cells. Another site in de novo purine synthesis was affected at higher concentrations of diastereomer B in L1210 cells. Low concentrations of both diastereomers were found to inhibit pure L1210 5'-phosphoribosylglycinamide formyltransferase competitively with the folate substrate. The two diastereomers were also efficient substrates for mouse liver folylpolyglutamate synthetase. We conclude that the 6R- and 6S-diastereomers of DDATHF are remarkably similar and equiactive antimetabolites inhibitory to de novo purine synthesis and that the biochemical processes involved in their cytotoxicity display little stereochemical specificity.  相似文献   

16.
Caffeine is known to potentiate the cytotoxicity of a variety of DNA damaging agents presumably by reducing the ability of the cells to repair potentially lethal lesions. However, in the present study we observe that 5 mM caffeine reverses the cell kinetic and cytotoxic effects of the intercalating drug Novantrone (mitoxantrone) on L1210, HL-60 and CHO cells. Novantrone alone, at a concentration of 20-30 ng/ml, given to cultures for 1 h, inhibits cell growth by about 50% and causes cells to accumulate in S and G2 phase and to enter a higher DNA ploidy level. Treatment of these cell lines with 5 mM caffeine alone for 1 h has a minimal effect on cell proliferation; suppression of cell growth varies from 5 to 10%. Exposure of cells to Novantrone for 1 h in the presence of caffeine results in a significant reduction of the Novantrone effects; the cell growth rate is partially restored (e.g. caffeine reduces suppression of L1210 cell growth from 48 to 83% of control) and in each of the cell lines studied, the Novantrone-induced cell accumulation in S and G2 is abolished. Combined treatment with caffeine and Novantrone also increases the clonogenicity of CHO cells 8.5 times over that seen in cultures treated with Novantrone alone. In contrast to the combined treatment with caffeine + Novantrone, pretreatment of cells with caffeine provides no protection. Likewise, post-treatment with caffeine provides little reversal of growth inhibition and G2 cell accumulation, especially if the post-treatment is delayed in time. The present data, in conjunction with evidence in the literature that caffeine protects cells against the cytotoxic effects of doxorubicin, suggest that caffeine may play a more general role in protecting cells against planar aromatic molecules such as intercalating agents.  相似文献   

17.
Lau E  Zhu C  Abraham RT  Jiang W 《EMBO reports》2006,7(4):425-430
The Cdc6 protein is required for licensing of replication origins before the onset of DNA replication in eukaryotic cells. Here, we examined whether Cdc6 has other roles in mammalian cell-cycle progression from S to G2/M phase. Using RNA interference, we showed that depletion of Cdc6 in synchronous G1 cells blocks G1 to S transition, confirming the essential role of Cdc6 in the initiation of DNA replication. In contrast, depletion of Cdc6 in synchronous S-phase cells slowed DNA replication and led to mitotic lethality. The Cdc6-depleted S-phase cells showed fewer newly fired origins; however, established replication forks remained active, even during chromatin condensation. Despite such DNA replication abnormalities, loss of Cdc6 failed to activate Chk1 kinase. These results show that Cdc6 is not only required for G1 origin licensing, but is also crucial for proper S-phase DNA replication that is essential for DNA segregation during mitosis.  相似文献   

18.
Fluorodeoxyuridine (FUdR)-synchronized mouse L cells were allowed to incorporate 5-bromodeoxyuridine (BUdR) at restricted intervals in the S phase and the effects of the selective incorporation of BUdR in DNA on the activities of seven randomly chosen enzymes (five dehydrogenases and two phosphatases) were analysed. Reductions to 56.9 and 83.3 % of the control levels were noted for glucose-6-phosphate dehydrogenase (G6PD) and alcohol dehydrogenase (ADH) activities respectively, when cells were exposed to BUdR during the 1st h of S. Acid phosphatase (AcP) activity was reduced to 81.9% of the control level following exposure to the analogue during the 3rd h of S. Exposure of cells to BUdR for the entire S period failed to increase the magnitude of the reductions in activity for any of these three enzymes. Alternately, when cells were allowed to synthesize DNA in the presence of thymidine for the 1st h of S and the remainder in the presence of BUdR, the activities of G6PD and ADH were comparable to those found in untreated cells. Exposure of cells to thymidine for the 3rd h of S, combined with exposure to BUdR for the preceding and subsequent hours of S, provided complete protection against the BUdR-mediated reduction in AcP activity. The activities of lactate dehydrogenase (LDH), 6-phosphogluconate dehydrogenase (6pGD), isocitrate dehydrogenase (IDH) and alkaline phosphatase (A1P) were found to be insensitive to treatment with BUdR, even when the period of analogue exposure encompassed the entire S period.Additional investigations carried out with G6PD for characterization of the nature of the BUdR effects suggest that the BUdR-mediated reductions in enzyme activities are not caused by the increased rates of degradation of the enzymes, formation of enzyme inhibitors or by the disproportionate replication of A-T base pairs during BUdR treatment. The alterations of enzyme activities appear to result from decreased rates of synthesis of enzymes in BUdR-treated cells. The results of the present study clearly suggest that pulse labelling of cells with BUdR at various intervals of the S phase may provide a useful approach for determining temporal localization of replication time of DNA segments that are critical for the synthesis or regulation of specific gene products.  相似文献   

19.
Erosions and ulcerations of the intestinal epithelium are hallmarks of inflammatory bowel diseases (IBD). Intestinal epithelial cell migration (restitution) and proliferation are pivotal mechanisms for healing of epithelial defects after mucosal injury. In addition, the rate of apoptosis of epithelial cells may modulate intestinal wound healing. The purine antagonists azathioprine (AZA) and 6-mercaptopurine (6-MP) are widely used drugs in the treatment of IBD. In the present study, the hitherto unknown effects of AZA as well as its metabolites 6-MP and 6-thioguanine (6-TG) on repair mechanisms and apoptosis of intestinal epithelia were analysed. Intestinal epithelial cell lines (human Caco-2, T-84 and HT-29 cells, rat IEC-6 cells) were incubated with AZA, 6-MP or 6-TG for 24 h (final concentrations 0.1-10 microM). Migration of Caco-2 and IEC-6 cells was analysed by in vitro restitution assays. Caco-2 and IEC-6 cell proliferation was evaluated by measurement of [3H]thymidine incorporation into DNA. Apoptosis of Caco-2, T-84, HT-29 and IEC-6 cells was assessed by histone ELISA, 4'6'diamidino-2'phenylindole-dihydrochloride staining as well as flow cytometric analysis of Annexin V/propidium iodide (PI)-stained cells. Cell cycle progression was evaluated by PI staining and flow cytometry. Epithelial restitution was not significantly affected by any of the substances tested. However, proliferation of intestinal epithelial cells was inhibited in a dose-dependent manner (maximal effect 92%) by AZA, 6-MP as well as 6-TG. In HT-29 cells, purine antagonist-effected inhibition of cell proliferation was explained by a cell cycle arrest in the G2 phase. In contrast, AZA, 6-MP and 6-TG induced no cell cycle arrest in Caco-2, T-84 and IEC-6 cells. AZA, 6-MP as well as 6-TG induced apoptosis in the non-transformed IEC-6 cell line but not in human Caco-2, T-84 and HT-29 cells. In summary, AZA and its metabolites exert no significant effect on intestinal epithelial restitution. However, they profoundly inhibit intestinal epithelial cell growth via various mechanisms: they cause a G2 cell cycle arrest in HT-29 cells, induce apoptosis in IEC-6 cells and dose-dependently inhibit intestinal epithelial proliferation.  相似文献   

20.
Poly(ADP-ribose) polymerase (PARP) senses DNA breaks and facilitates DNA repair via the polyADP-ribosylation of various DNA binding and repair proteins. We explored the mechanism of potentiation of temozolomide cytotoxicity by the PARP inhibitor ABT-888. We showed that cells treated with temozolomide need to be exposed to ABT-888 for at least 17 to 24 hours to achieve maximal cytotoxicity. The extent of cytotoxicity correlates with the level of double-stranded DNA breaks as indicated by gammaH2AX levels. In synchronized cells, damaging DNA with temozolomide in the presence of ABT-888 during the S phase generated high levels of double-stranded breaks, presumably because the single-stranded DNA breaks resulting from the cleavage of the methylated nucleotides were converted into double-stranded breaks through DNA replication. As a result, treatment of temozolomide and ABT-888 during the S phase leads to higher levels of cytotoxicity. ABT-888 inhibits poly(ADP-ribose) formation in vivo and enhances tumor growth inhibition by temozolomide in multiple models. ABT-888 is well tolerated in animal models. ABT-888 is currently in clinical trials in combination with temozolomide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号