首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms in the family Geobacteraceae are the predominant Fe(III)-reducing microorganisms in a variety of subsurface environments in which Fe(III) reduction is an important process, but little is known about the mechanisms for electron transport to Fe(III) in these organisms. The Geobacter sulfurreducens genome was found to contain a 10-kb chromosomal duplication consisting of two tandem three-gene clusters. The last genes of the two clusters, designated omcB and omcC, encode putative outer membrane polyheme c-type cytochromes which are 79% identical. The role of the omcB and omcC genes in Fe(III) reduction in G. sulfurreducens was investigated. OmcB and OmcC were both expressed during growth with acetate as the electron donor and either fumarate or Fe(III) as the electron acceptor. OmcB was ca. twofold more abundant under both conditions. Disrupting omcB or omcC by gene replacement had no impact on growth with fumarate. However, the OmcB-deficient mutant was greatly impaired in its ability to reduce Fe(III) both in cell suspensions and under growth conditions. In contrast, the ability of the OmcC-deficient mutant to reduce Fe(III) was similar to that of the wild type. When omcB was reintroduced into the OmcB-deficient mutant, the capacity for Fe(III) reduction was restored in proportion to the level of OmcB production. These results indicate that OmcB, but not OmcC, has a major role in electron transport to Fe(III) and suggest that electron transport to the outer membrane is an important feature in Fe(III) reduction in this organism.  相似文献   

2.
3.
Previous studies with Geobacter sulfurreducens have demonstrated that OmcS, an abundant c-type cytochrome that is only loosely bound to the outer surface, plays an important role in electron transfer to Fe(III) oxides as well as other extracellular electron acceptors. In order to further investigate the function of OmcS, it was purified from a strain that overproduces the protein. Purified OmcS had a molecular mass of 47015 Da, and six low-spin bis-histidinyl hexacoordinated heme groups. Its midpoint redox potential was -212 mV. A thermal stability analysis showed that the cooperative melting of purified OmcS occurs in the range of 65-82 °C. Far UV circular dichroism spectroscopy indicated that the secondary structure of purified OmcS consists of about 10% α-helix and abundant disordered structures. Dithionite-reduced OmcS was able to transfer electrons to a variety of substrates of environmental importance including insoluble Fe(III) oxide, Mn(IV) oxide and humic substances. Stopped flow analysis revealed that the reaction rate of OmcS oxidation has a hyperbolic dependence on the concentration of the studied substrates. A ten-fold faster reaction rate with anthraquinone-2,6-disulfonate (AQDS) (25.2 s?1) was observed as compared to that with Fe(III) citrate (2.9 s?1). The results, coupled with previous localization and gene deletion studies, suggest that OmcS is well-suited to play an important role in extracellular electron transfer.  相似文献   

4.
The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS(-2) as an electron donor. The observed K(M) was 38.5 ± 3.7 μM H(2)O(2) and v(max) was 0.78 ± 0.03 μmol of H(2)O(2)·min(-1)·mg(-1), resulting in a turnover number k(cat) = 0.46 · s(-1). In contrast, no Fe(III) reductase activity was observed. MacA was found to display electrochemical properties similar to other bacterial diheme peroxidases, in addition to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergoes conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein, the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation.  相似文献   

5.
6.
Geobacter sulfurreducens contains a 9.6-kDa c-type cytochrome that was previously proposed to serve as an extracellular electron shuttle to insoluble Fe(III) oxides. However, when the cytochrome was added to washed-cell suspensions of G. sulfurreducens it did not enhance Fe(III) oxide reduction, whereas similar concentrations of the known electron shuttle, anthraquinone-2,6-disulfonate, greatly stimulated Fe(III) oxide reduction. Furthermore, analysis of the extracellular c-type cytochromes in cultures of G. sulfurreducens demonstrated that the dominant c-type cytochrome was not the 9.6-kDa cytochrome, but rather a 41-kDa cytochrome. These results and other considerations suggest that the 9.6-kDa cytochrome is not an important extracellular electron shuttle to Fe(III) oxides.  相似文献   

7.
8.
9.
Growth using Fe(III) as a terminal electron acceptor is a critical physiological process in Geobacter sulfurreducens. However, the mechanisms of electron transfer during Fe(III) reduction are only now being understood. It has been demonstrated that the pili in G. sulfurreducens function as microbial nanowires conducting electrons onto Fe(III) oxides. A number of c-type cytochromes have also been shown to play important roles in Fe(III) reduction. However, the regulatory networks controlling the expression of the genes involved in such processes are not well known. Here we report that the expression of pilA, which encodes the pilistructural protein, is directly regulated by a two-component regulatory system in which PilR functions as an RpoN-dependent enhancer binding protein. Surprisingly, a deletion of the pilR gene affected not only insoluble Fe(III) reduction, which requires pili, but also soluble Fe(III) reduction, which, in contrast, does not require pili. Gene expression profiling using whole-genome DNA microarray and quantitative RT-PCR analyses obtained with a PilR-deficient mutant revealed that the expression of pilA and other pilin-related genes are downregulated, while many c-type cytochromes involved in Fe(III) reduction were differentially regulated. This is the first instance of an enhancer binding protein implicated in regulating genes involved in Fe(III) respiratory functions.  相似文献   

10.
Heitmann D  Einsle O 《Biochemistry》2005,44(37):12411-12419
Multiheme cytochromes c constitute a widespread class of proteins with essential functions in electron transfer and enzymatic catalysis. Their functional properties are in part determined by the relative arrangement of multiple heme cofactors, which in many cases have been found to pack in conserved interaction motifs. Understanding the significance of these motifs is crucial for the elucidation of the highly optimized properties of multiheme cytochromes c, but their spectroscopic investigation is often hindered by the large number and efficient coupling of the individual centers and the limited availability of recombinant protein material. We have identified a diheme cytochrome c, DHC2, from the metal-reducing soil bacterium Geobacter sulfurreducens and determined its crystal structure by the method of multiple-wavelength anomalous dispersion (MAD). The two heme groups of DHC2 pack into one of the typical heme interaction motifs observed in larger multiheme cytochromes, but because of the absence of further, interfering cofactors, the properties of this heme packing motif can be conveniently studied in detail. Spectroscopic properties (UV-vis and EPR) of the protein are typical for cytochromes containing low-spin Fe(III) centers with bis-histidinyl coordination. Midpoint potentials for the two heme groups have been determined to be -135 and -289 mV by potentiometric redox titrations. DHC2 has been produced by recombinant expression in Escherichia coli using the accessory plasmid pEC86 and is therefore accessible for systematic mutational studies in further investigating the properties of heme packing interactions in cytochromes c.  相似文献   

11.
12.
13.
Few studies have examined the molecular to micron-scale interactions between dissimilatory Fe(III)-reducing bacteria and poorly crystalline Fe(III) phases which are frequently the most bioavailable Fe(III) sources in the subsurface. Here we describe methods for analysing these interactions using a range of chemical and spectroscopic techniques. Glass slides were coated with a synthetic poorly crystalline Fe(III) phase and then incubated in the presence of the Fe(III)-reducing bacterium Geobacter sulfurreducens and a suitable growth medium. Growth on the Fe(III)-coating was observed via cell staining and environmental scanning electron microscopy while microbial Fe(III) reduction was quantified using a colorimetric assay. However, following microbial reduction, Fe(II) could not be detected on the slide surface using X-ray photoelectron spectroscopy. Fe(II)-coated control slides showed that the mineral surface was not re-oxidised during handling or analysis. Further experiments intended to demonstrate removal of Tc(VII) and Cr(VI) from solution via abiotic reduction mediated by biogenic Fe(II) on the slide surface resulted in far lower levels of Tc(VII) and Cr(VI) reduction than expected. These data may indicate that the electrons transferred from G. sulfurreducens to poorly crystalline Fe(III) involves the deeper mineral structure, so that Fe(II) phases are not detectable on the surface. The environmental implications of this hypothesis are discussed.  相似文献   

14.
Geobacter sulfurreducens is a well-studied representative of the Geobacteraceae, which play a critical role in organic matter oxidation coupled to Fe(III) reduction, bioremediation of groundwater contaminated with organics or metals, and electricity production from waste organic matter. In order to investigate G. sulfurreducens central metabolism and electron transport, a metabolic model which integrated genome-based predictions with available genetic and physiological data was developed via the constraint-based modeling approach. Evaluation of the rates of proton production and consumption in the extracellular and cytoplasmic compartments revealed that energy conservation with extracellular electron acceptors, such as Fe(III), was limited relative to that associated with intracellular acceptors. This limitation was attributed to lack of cytoplasmic proton consumption during reduction of extracellular electron acceptors. Model-based analysis of the metabolic cost of producing an extracellular electron shuttle to promote electron transfer to insoluble Fe(III) oxides demonstrated why Geobacter species, which do not produce shuttles, have an energetic advantage over shuttle-producing Fe(III) reducers in subsurface environments. In silico analysis also revealed that the metabolic network of G. sulfurreducens could synthesize amino acids more efficiently than that of Escherichia coli due to the presence of a pyruvate-ferredoxin oxidoreductase, which catalyzes synthesis of pyruvate from acetate and carbon dioxide in a single step. In silico phenotypic analysis of deletion mutants demonstrated the capability of the model to explore the flexibility of G. sulfurreducens central metabolism and correctly predict mutant phenotypes. These results demonstrate that iterative modeling coupled with experimentation can accelerate the understanding of the physiology of poorly studied but environmentally relevant organisms and may help optimize their practical applications.  相似文献   

15.
Geobacter sulfurreducens is a well-studied representative of the Geobacteraceae, which play a critical role in organic matter oxidation coupled to Fe(III) reduction, bioremediation of groundwater contaminated with organics or metals, and electricity production from waste organic matter. In order to investigate G. sulfurreducens central metabolism and electron transport, a metabolic model which integrated genome-based predictions with available genetic and physiological data was developed via the constraint-based modeling approach. Evaluation of the rates of proton production and consumption in the extracellular and cytoplasmic compartments revealed that energy conservation with extracellular electron acceptors, such as Fe(III), was limited relative to that associated with intracellular acceptors. This limitation was attributed to lack of cytoplasmic proton consumption during reduction of extracellular electron acceptors. Model-based analysis of the metabolic cost of producing an extracellular electron shuttle to promote electron transfer to insoluble Fe(III) oxides demonstrated why Geobacter species, which do not produce shuttles, have an energetic advantage over shuttle-producing Fe(III) reducers in subsurface environments. In silico analysis also revealed that the metabolic network of G. sulfurreducens could synthesize amino acids more efficiently than that of Escherichia coli due to the presence of a pyruvate-ferredoxin oxidoreductase, which catalyzes synthesis of pyruvate from acetate and carbon dioxide in a single step. In silico phenotypic analysis of deletion mutants demonstrated the capability of the model to explore the flexibility of G. sulfurreducens central metabolism and correctly predict mutant phenotypes. These results demonstrate that iterative modeling coupled with experimentation can accelerate the understanding of the physiology of poorly studied but environmentally relevant organisms and may help optimize their practical applications.  相似文献   

16.
NADPH is an intermediate in the oxidation of organic compounds coupled to Fe(III) reduction in Geobacter species, but Fe(III) reduction with NADPH as the electron donor has not been studied in these organisms. Crude extracts of Geobacter sulfurreducens catalyzed the NADPH-dependent reduction of Fe(III)-nitrilotriacetic acid (NTA). The responsible enzyme, which was recovered in the soluble protein fraction, was purified to apparent homogeneity in a four-step procedure. Its specific activity for Fe(III) reduction was 65 micromol. min(-1). mg(-1). The soluble Fe(III) reductase was specific for NADPH and did not utilize NADH as an electron donor. Although the enzyme reduced several forms of Fe(III), Fe(III)-NTA was the preferred electron acceptor. The protein possessed methyl viologen:NADP(+) oxidoreductase activity and catalyzed the reduction of NADP(+) with reduced methyl viologen as electron donor at a rate of 385 U/mg. The enzyme consisted of two subunits with molecular masses of 87 and 78 kDa and had a native molecular mass of 320 kDa, as determined by gel filtration. The purified enzyme contained 28.9 mol of Fe, 17.4 mol of acid-labile sulfur, and 0.7 mol of flavin adenine dinucleotide per mol of protein. The genes encoding the two subunits were identified in the complete sequence of the G. sulfurreducens genome from the N-terminal amino acid sequences derived from the subunits of the purified protein. The sequences of the two subunits had about 30% amino acid identity to the respective subunits of the formate dehydrogenase from Moorella thermoacetica, but the soluble Fe(III) reductase did not possess formate dehydrogenase activity. This soluble Fe(III) reductase differs significantly from previously characterized dissimilatory and assimilatory Fe(III) reductases in its molecular composition and cofactor content.  相似文献   

17.
Microbial dissimilatory iron reduction (DIR) is widespread in anaerobic sediments and is a key producer of aqueous Fe(II) in suboxic sediments that contain reactive ferric oxides. Previous studies have shown that DIR produces some of the largest natural fractionations of stable Fe isotopes, although the mechanism of this isotopic fractionation is not yet well understood. Here we compare Fe isotope fractionations produced by similar cultures of Geobacter sulfurreducens strain PCA and Shewanella putrefaciens strain CN32 during reduction of hematite and goethite. Both species produce aqueous Fe(II) that is depleted in the heavy Fe isotopes, as expressed by a decrease in 56Fe/54Fe ratios or δ56Fe values. The low δ56Fe values for aqueous Fe(II) produced by DIR reflect isotopic exchange among three Fe inventories: aqueous Fe(II) (Fe(II)aq), sorbed Fe(II) (Fe(II)sorb), and a reactive Fe(III) component on the ferric oxide surface (Fe(III)reac). The fractionation in 56Fe/54Fe ratios between Fe(II)aq and Fe(III)reac was –2.95‰, and this remained constant over the timescales of the experiments (280 d). The Fe(II)aq – Fe(III)reac fractionation was independent of the ferric Fe substrate (hematite or goethite) and bacterial species, indicating a common mechanism for Fe isotope fractionation during DIR. Moreover, the Fe(II)aq – Fe(III)reac fractionation in 56Fe/54Fe ratios during DIR is identical within error of the equilibrium Fe(II)aq – ferric oxide fractionation in abiological systems at room temperatures. This suggests that the role of bacteria in producing Fe isotope fractionations during DIR lies in catalyzing coupled atom and electron exchange between Fe(II)aq and Fe(III)reac so that equilibrium Fe isotope partitioning occurs. Although Fe isotope fractionation between Fe(II)aq and Fe(III)reac remained constant, the absolute δ56Fe values for Fe(II)aq varied as a function of the relative proportions of Fe(II)aq, Fe(II)sorb, and Fe(III)reac during reduction. The temporal variations in these proportions were unique to hematite or goethite but independent of bacterial species. In the case of hematite reduction, the small measured Fe(II)aq – Fe(II)sorb fractionation of −0.30‰ in 56Fe/54Fe ratios, combined with the small proportion of Fe(II)sorb, produced insignificant (<0.05‰) isotopic effects due to sorption of Fe(II). Sorption of Fe(II) produced small, but significant effects during reduction of goethite, reflecting the higher proportion of Fe(II)sorb and larger measured Fe(II)aq – Fe(II)sorb fractionation of –0.87‰ in 56Fe/54Fe ratios for goethite. The isotopic effects of sorption on the δ56Fe values for Fe(II)aq were largest during the initial stages of reduction when Fe(II)sorb was the major ferrous Fe species during goethite reduction, on the order of 0.3 to 0.4‰. With continued reduction, however, the isotopic effects of sorption decreased to <0.2‰. These results provide insight into the mechanisms that produce Fe isotope fractionation during DIR, and form the basis for interpretation of Fe isotope variations in modern and ancient natural systems where DIR may have driven Fe cycling.  相似文献   

18.
19.
Geobacter sulfurreducens, a representative of the family Geobacteraceae that predominates in Fe(III)-reducing subsurface environments, can grow by coupling the oxidation of hydrogen to the reduction of a variety of electron acceptors, including Fe(III), fumarate, and quinones. An examination of the G. sulfurreducens genome revealed two operons, hya and hyb, which appeared to encode periplasmically oriented respiratory uptake hydrogenases. In order to assess the roles of these two enzymes in hydrogen-dependent growth, Hya- and Hyb-deficient mutants were generated by gene replacement. Hyb was found to be required for hydrogen-dependent reduction of Fe(III), anthraquinone-2,6-disulfonate, and fumarate by resting cell suspensions and to be essential for growth with hydrogen and these three electron acceptors. Hya, in contrast, was not. These findings suggest that Hyb is an essential respiratory hydrogenase in G. sulfurreducens.  相似文献   

20.
The mechanisms for Fe(III) oxide reduction in Geobacter species are of interest because Fe(III) oxides are the most abundant form of Fe(III) in many soils and sediments and Geobacter species are prevalent Fe(III)-reducing microorganisms in many of these environments. Protein abundance in G. sulfurreducens grown on poorly crystalline Fe(III) oxide or on soluble Fe(III) citrate was compared with a global accurate mass and time tag proteomic approach in order to identify proteins that might be specifically associated with Fe(III) oxide reduction. A total of 2991 proteins were detected in G. sulfurreducens grown with acetate as the electron donor and either Fe(III) oxide or soluble Fe(III) citrate as the electron acceptor, resulting in 86% recovery of the genes predicted to encode proteins. Of the total expressed proteins 76% were less abundant in Fe(III) oxide cultures than in Fe(III) citrate cultures, which is consistent with the overall slower rate of metabolism during growth with an insoluble electron acceptor. A total of 269 proteins were more abundant in Fe(III) oxide-grown cells than in cells grown on Fe(III) citrate. Most of these proteins were in the energy metabolism category: primarily electron transport proteins, including 13 c-type cytochromes and PilA, the structural protein for electrically conductive pili. Several of the cytochromes that were more abundant in Fe(III) oxide-grown cells were previously shown with genetic approaches to be essential for optimal Fe(III) oxide reduction. Other proteins that were more abundant during growth on Fe(III) oxide included transport and binding proteins, proteins involved in regulation and signal transduction, cell envelope proteins, and enzymes for amino acid and protein biosynthesis, among others. There were also a substantial number of proteins of unknown function that were more abundant during growth on Fe(III) oxide. These results indicate that electron transport to Fe(III) oxide requires additional and/or different proteins than electron transfer to soluble, chelated Fe(III) and suggest proteins whose functions should be further investigated in order to better understand the mechanisms of electron transfer to Fe(III) oxide in G. sulfurreducens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号