首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Nitrate reductase deficient (NR-) cell lines were selected indirectly by their resistance to 40 mM chlorate in protoplast cultures of haploidNicotiana plumbaginifolia. Frequency of the chlorate resistant clones was 5.8×10-5 in non-mutagenized cultures, which could be increased up to 25 times by treatment with N-ethyl-N-nitrosourea (NEU) or gamma irradiation.Out of 136 chlorate resistant clones 29 were fully deficient in nitrate reductase. The rest of the clones contained decreased or normal levels of NR activity (91 and 16 clones, respectively).Further characterization was carried out in 9 clones which were fully deficient in NR and in 2 clones containing resisdual (0–5%) NR activity. The clones were tentatively classified as defective in the apoenzyme (7 clones including the 2 with residual NR activity) or the cofactor (4 clones) of NR by the xanthine dehydrogenase activity and in vitro enzyme complementation. The cofactor defectives could be further classified into two groups. In one of these (2 clones) the NR activity could be partially restored by unphysiologically high (0.2–1 mM) molybdate in the culture medium. The other two are new types which have not been described in flowering plants.Plant regeneration was obtained only in the clones which contained residual NR activity.  相似文献   

3.
Summary Several amino acid requiring auxotrophs have been isolated from unsupplemented protoplast cultures of haploid Nicotiana plumbaginifolia following incubation with BUdR (1-5x10-5, 2 days) and recovery on complete medium. The auxotrophic lines required the following amino acid(s) for growth: his, ile, leu, ile+val, met or try. Met is a new type isolated in higher plants. The same absolute amino acid requirement was observed in plants regenerated from auxotrophic cultures. Precursor feeding tests, enzyme assays, and/or metabolic complementation through protoplast fusion were used to identify the genetic lesion leading to auxotrophy. Mutant seeds were obtained from supplemented Met plants. Seeds were also collected from selfed plants regenerated from various complementing fusion products, and a His revertant. Genetic analysis indicated that under natural conditions of seed formation amino acid auxotrophy-in contrast to NR deficiency-failed to segregate in progeny tests.Abbreviations and definitions BUdR and FUdR 5-bromo- and fluoro-deoxyuridine respectively - AP imidazole acetol phosphate - IGP imidazole glycerol phosphate - NR nitrate reductase - NAA naphthaleneacetic acid - BAP 6-benzylaminopurine - TIP total isolation procedure - ER Escape rate—the proportion of the selected cell population surviving the BUdR treatment - BR Recovery rate—the proportion of clones identified as amino acid auxotrophs from total escaping clones - TS Total surviving colonies—the number of inoculated protoplasts/variant x plating efficiency - TST Total starvation time—the number of days on minimal medium (preincubation time+BUdR incubation time). The relationship days vs. number of divisions is as follows: 3- to 4-day-old protoplasts, 1 division; 5–6 days, 2 divisions; 7–8 days, 3 divisions Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

4.
Summary Lincomycin-resistant clones were isolated in diploid protoplast cultures of Nicotiana plumbaginifolia. Selection of the resistant clones was based on the ability of resistant calli to green in the presence of the antibiotic (1,000 mg l-1). Sensitive colonies formed white calli under the same conditions. In the absence of mutagenic treatment the frequency of the resistant clones was 1.0×10-4. This frequency could be increased up to 5.8×10-4 and 7.2×10-4 by treatment with 0.1 mM and 0.3 mM N-ethyl-N-nitrosourea (NEU), respectively.Regenerated plants of 56 clones were tested for lincomycin resistance. Regenerates from all but seven clones were resistant to lincomycin, as demonstrated by leaf assay. The lincomycin-resistant regenerates tested were also resistant to clindamycin (a lincomycin derivative), but sensitive to streptomycin.Regenerated plants in 17 clones were fully fertile and inherited lincomycin resistance maternally. Segregation for lincomycin resistance was observed in the seed progeny of five clones, which indicated maintenance of mixed cytoplasmic determinants after plant regeneration. Seed transmission of lincomycin resistance was confirmed in an additional 17 clones but the mode of inheritance (maternal or Mendelian) was not determined because of pollen sterility or reduced seed germination ability. These defects first appeared when the higher concentration of NEU was used. Various pigment deficiencies were also observed in a few clones.  相似文献   

5.
Summary Fusion of protoplasts from the moss, Physcomitrella patens, was induced using polyethyleneglycol. Protoplasts were isolated from six nicotinic acid auxotrophic strains of independent origin and fusion was induced in all possible pairwise combinations. Complementation was detected by the ability to recover hybrids able to grow without nicotinic acid supplement. On the basis of the results presented, three nonoverlapping complementation groups were identified.  相似文献   

6.
Summary A lincomycin-resistant cell line, LR105, was isolated in a mutagenized (0.1 mM N-ethyl-N-nitrosourea) callus culture initiated from a haploid Nicotiana sylvestris plant. The regenerated plants had an abnormal morphology and did not set viable seeds.Transfer of lincomycin resistance was attempted from the original N. sylvestris nuclear background into Nicotiana plumbaginifolia by protoplast fusion, since it was expected that resistance would be cytoplasmically coded. LR105 protoplasts were irradiated with a lethal dose (120 J kg-1; 60 Co source), fused with sensitive N. plumbaginifolia protoplasts and the colonies grown from the fused population were screened for lincomycin resistance. Expression of resistance was expected only if the cytoplasm of the irradiated cells had mixed with nonirradiated cytoplasm, and was reactivated as a result of cell fusion (Menczel et al. 1982).Plants were regenerated in 44 resistant clones. Plants in 41 clones had a N. plumbaginifolia nuclear genome. In three clones somatic hybrids were obtained. The resistant N. plumbaginifolia cybrid plants were fertile, unlike the original LR105 plants. Lincomycin resistance was inherited maternally in the eight clones in which crosses were made. In these clones the introduction of N. sylvestris chloroplasts into a N. plumbaginifolia nuclear background was confirmed by the SmaI restriction endonuclease pattern of the chloroplast DNA. The involvement of chloroplast DNA in determining lincomycin resistance is therefore implied.  相似文献   

7.
Summary Auxin (indole-3-acetic acid) is considered to be an important signalling molecule in the regulation of plant growth and development but neither auxin synthesis nor its mode of action is clearly understood. To identify genes involved in these processes, mutations were sought that altered the auxin requirement of plant tissues for growth. For the first time mutant plants were obtained that carry a recessive mutation at a single nuclear locus (auxl) which results in an absolute requirement for exogenous auxin for normal growth. In the absence of auxin treatment, mutant plants undergo premature senescence and die.Abbreviations BAP 6-benzylaminopurine - BUdR 5-bromodeoxyuridine - 2,4-D 2,4-dichlorophenoxyacetic acid - FUdR 5-fluorodeoxyuridine - IAA-EE indole-3-acetic acid ethyl ester - IMS indole-3-methanesulfonic acid  相似文献   

8.
Summary Allelism of nine nitrate reductase deficient (NR) Nicotiana plumbaginifolia cell lines was tested by complementation after protoplast fusion. Complementation was recognized by the appearance of somatic hybrid colonies growing on a selective NH4 +/NO3 medium which cannot support the growth of NR lines. All five apoenzyme defective (NA) lines were non-complementing and therefore allelic. The apoenzyme and the cofactor defective (NX) lines were complementing, as expected, and gave somatic hybrids with restored nitrate reductase activity. The four cofactor defective lines were found to belong to three complementation groups (NX1 and NX9; NX21; NX24). Two of these (NX21 and NX24) are of new types which have not been previously described in flowering plants. In the somatic hybrids restoration of NR activity was accompanied by the restoration of plant regeneration ability. On leave from: Instituto di Mutagenesi e Differenziamento CNR, Via Svezia, 10, 56100, Pisa, Italy  相似文献   

9.
This work reports the isolation and preliminary characterization ofNicotiana plumbaginifolia mutants resistant to methylammonium.Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up byNicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.  相似文献   

10.
Summary Spontaneous revertants of nitrate reductase (NR)-less mutants were isolated by screening for nitrate utilization in diploid NR protoplast cultures of Nicotiana plumbaginifolia. The revertants contained in vivo NR activity in the case of apoenzyme mutants (nia) as well as of a cofactor-deficient (cnx) mutant. Revertants of the NIA type proved to be tetraploid, and genetic analysis showed that only one out of the four NR structural genes had reverted to a functional allele.  相似文献   

11.
It was determined using electrophoresis in polyacrylamide gels containing native DNA or RNA that sugar non-specific nuclease active at pH 5.2 was expressed in tobacco callus. The nuclease had a relative molecular mass of about 34.6 kDaltons and degraded substrates in the following order of decreasing rate: denaturated DNA>poly dA>UV-irradiated native DNA>native DNA>alkylated native DNA>apurinated native DNA>poly dGpoly dC. The nuclease activity changed during callus growth and plant regeneration, but no developmental changes in electrophoretic patterns were detected. The increase in specific DNAse activity of nuclease was maximal in the exponential phase of callus growth on both growth and regeneration media, except for activity in the cytokinin-independent cell strain grown on growth medium. The specific DNAse activity of nuclease decreased during the bud formation period, while total DNAse activity calculated per mg of dry weight was slightly higher in vegetative buds (9.1U) than in undifferentiated tissue of callus (8.5U). Specific DNAse activity was, on the average, several hundred-fold lower in the vegetative tissues of flowering tobacco plants than in calluses in the exponential phase of growth.  相似文献   

12.
The maize autonomous transposable element Ac was introduced into haploid Nicotiana plumbaginifolia via Agrobacterium tumefaciens transformation of leaf disks. All the regenerated transformants (R0) were diploid and either homozygous or heterozygous for the hygromycin resistance gene used to select primary transformants. The Ac excision frequency was determined using the phenotypic assay of restoration of neomycin phosphotransferase activity and expression of kanamycin resistance among progeny seedlings. Some of the R0 plants segregated kanamycin-resistant seedlings in selfed progeny at a high frequency (34 to 100%) and contained one or more transposed Ac elements. In the primary transformants Ac transposition probably occurred during plant regeneration or early development. Other R0 transformants segregated kanamycin-resistant plants at a low frequency ( 4%). Two transformants of this latter class, containing a unique unexcised Ac element, were chosen for further study in the expectation that their kanamycin resistant progeny would result from independent germinal transposition events. Southern blot analysis of 32 kanamycin-resistant plants (R1 or R2), selected after respectively one or two selfings of these primary transformants, showed that 27 had a transposed Ac at a new location and 5 did not have any Ac element. Transposed Ac copy number varied from one to six and almost all transposition events were independent. Southern analysis of the R2 and R3 progeny of these kanamycin-resistant plants showed that Ac continued to transpose during four generations, and its activity increased with its copy number. The frequency of Ac transposition, from different loci, remained low ( 7%) from R0 to R3 generations when only one Ac copy was present. The strategy of choosing R0 plants that undergo a low frequency of germinal excision will provide a means to avoid screening non-independent transpositions and increase the efficiency of transposon tagging.  相似文献   

13.
14.
Summary Fusion complementation experiments between nitrate reductase (NR) deficient lines CNX 20, 27, 82 and 103 of Nicotiana plumbaginifolia were performed with the already characterized N. plumbaginifolia mutants nx 1, 24 and 21, belonging respectively to the complementation groups cnx A, B and C. CNX 20 and 82 were identified as belonging to the group of cnx A. CNX 27 complemented with NX 1 and NX 21 but not with NX 24 indicating another B type. The fourth line, CNX 103 showed complementation with CNX 20, NX 21 and NX 24, revealing a fourth cnx complementation group, cnx D, that until now has not been described in higher plants. Genetic crosses inside respectively the NIA and the CNX group, and between NIA and CNX confirmed the fusion complementation results, and showed allelism for the nia mutants  相似文献   

15.
Summary We have isolated nine independent auxin-resistant mutants of Nicotiana plumbaginifolia by culturing M2 seedlings in the presence of indole-3-acetic acid ethyl ester or 1-naphthaleneacetic acid at concentrations which significantly inhibit hypocotyl elongation of the wild type. The mutations were induced by treating seed with ethyl methanesulphonate and were found in the course of screening 10 000 individual M2 families. Auxin resistance was in all cases the result of a mutation at a single, nuclear locus. The dominance relationships of two of the mutants could be defined as recessive or dominant; all other mutants showed partial dominance. In contrast to previously described mutants of Arabidopsis and N. plumbaginifolia, all of the present mutants were specifically resistant to auxin; the mutants were cross-resistant to several auxins, but showed no increased resistance to cytokinin, abscisic acid, ethylene or 1-amino-cyclopropane-1-carboxylic acid. The importance of the choice of the selection criterion for the isolation of specific resistance traits is discussed.  相似文献   

16.
17.
Acridine orange simultaneously stains DNA and RNA. Using flow cytometry, synthesis of these nucleic acids can be related throughout a culture time-course. This technique has been used with nuclei isolated from Petunia hybrida protoplasts during 48 h of culture. Nuclear RNA content has been evaluated with respect to DNA levels, namely the cell-cycle phase. Nuclear RNA synthesis was not dependent upon exogeneous hormones during the first 18 h of culture, but either auxin (2,4-dichlorophenoxyacetic acid, 2,4-D) or cytokinin (N6-benzyladenine) were necessary for entry into the S phase. Cytokinin alone could stimulate maximal RNA synthesis within each cell-cycle phase up to 24 h. In complete medium, DNA synthesis only began from a phase “G1B” having substantial RNA, although a subnormal amount of RNA (in protoplasts cultivated only with 2,4-D) did not prevent protoplast entry into the S phase. However, both hormones were necessary for highest RNA levels and G2 frequencies after 48 h. As in mammalian cells, the mean RNA level in plant 4C nuclei is double that of 2C nuclei. G2 nuclei are larger than G1 nuclei, but upon activation G1 nuclei in fact diminsh in size. This study aimed to identify restriction points in the cell cycle as affected by growth regulators and the specific synthesis of nucleic acids. For example, the RNA levels induced by N6-benzyladenine, although similar to those in complete medium, were not sufficient to induce mitosis. Conversely, 2,4-D action was probably limited by low nucleotide synthesis in the absence of cytokinin.  相似文献   

18.
Ten systemic microorganisms (bacteria and yeasts) were isolated from stem sections of ex vitro grown rubber plants. Antibiotics were screened for their efficacy against these microorganisms and for possible tissue phytotoxicity. Erythromycin, nystatin and streptomycin at bactericidal levels were asymptomatic in relation to tissue stress nor was callusing capacity reduced. Contamination of stem explants as used for callus initiation, was reduced from 95.8 to 43.8% by the incorporation of these three antibiotics, at concentrations of 32.0, 16.0, 16.0 g/ml respectively. Contamination was eliminated from protoplast cultures by these antibiotics, at half strength, in the plasmolysis and enzyme solutions. Rubber protoplast survival was promoted by these antibiotics.Abbreviations WPM woody plant medium (Lloyd and McCown 1981) - 24D 2,4-dichlorophenoxyacetic acid - KN kinetin - WPMDKN woody plant basal medium supplemented with 2.0 mg/l 24D and 0.5 mg/l KN - MS Murashige and Skoog (1962) - ery. erythromycin - ny. nystatin - strep. streptomycin sulphate - tet. tetracycline (all Sigma) - FDA fluorescein diacetate - MIC minimum inhibitory concentration  相似文献   

19.
A mutant of the green alga Chlamydomonas reinhardi has been isolated which forms a cell wall at 25 °C but not at 35 °C. This conditional protoplast might be of interest in all studies where the temporary presence or absence of the cell wall is desired.  相似文献   

20.
Protoplasts of morphologically and biochemically different Claviceps purpurea strains producing ergotoxins were fused without introducing selective auxotrophic markers. Fused strains thus obtained differed significantly in biosynthetic activity and morphology from the prototrophic isolates obtained after fusion of the same parent strains marked by auxotrophy. Comparison of the two types of fused strains showed about tenfold higher alkaloid production in fusants obtained from prototrophic strains. Selected stable prototrophic isolates also showed a significant productivity improvement in comparison with the original parent strains. Correspondence to: M. Didek-Brumec  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号