首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient. We derived an optimum wash temperature for each probe and target by using a simple formula to calculate a discrimination index for each temperature of the step gradient. This optimum corresponded to the output of an independent analysis using a customized neural network program. These results together provide an experimental and analytical framework for optimizing mismatch discrimination among all probes on a DNA microarray.  相似文献   

2.
Past studies have suggested that thermal dissociation analysis of nucleic acids hybridized to DNA microarrays would improve discrimination among duplex types by scanning through a broad range of stringency conditions. To more fully constrain the utility of this approach using a previously described gel-pad microarray format, artificial neural networks (NNs) were trained to recognize noisy or low-quality data, as might derive from nonspecific fluorescence, poor hybridization, or compromised data collection. The NNs were trained to classify dissociation profiles (melts) into groups based on selected characteristics (e.g., initial signal intensity, area under the curve) using a data set of 21,044 profiles derived from 186 probes hybridized to a study set of RNA extracted from 32 microbes common to the human oral cavity. Three melt profile groups were identified: one group consisted mostly of ideal melt profiles; another group consisted mostly of poor melt profiles; and, the remainder were difficult to classify. Screening of melting profiles of perfect-match hybrids revealed inconsistencies in the form of melting profiles even for identical probes on the same microarray hybridized to same target rRNA. Approximately 18% of perfect-match duplex types were correctly classified as poor. Experimental variability and deviation from ideal melt behavior were shown to be attributable primarily to a method of local background subtraction that was very sensitive to displacement of the grid frames used for image capture (both determined by the image analysis system) and duplexes with low binding constants. Additional results showed that long RNA fragments limit the discriminating power among duplex types.  相似文献   

3.
Substitution of one non-bridging oxygen in a natural phosphodiester internucleotide linkage with a borano (-BH3) group results in a chiral phosphorus center in boranophosphate. UV thermal melting profiles were recorded for DNA duplexes formed between a DNA 9-mer with either an Sp or a Rp boranophosphate linkage in the middle and the complementary DNA 9-mer, as well as for their unmodified parent duplex. The thermal stability of the DNA duplexes was in the order of normal > Sp borano > Rp borano. CD spectra of all three duplexes exhibited typical B-DNA profile, which closely resembled each other.  相似文献   

4.
Substitution of one non-bridging oxygen in a natural phosphodiester internucleotide linkage with a borano (-BH3) group results in a chiral phosphorus center in boranophosphate. UV thermal melting profiles were recorded for DNA duplexes formed between a DNA 9-mer with either an Sp or a Rp boranophosphate linkage in the middle and the complementary DNA 9-mer, as well as for their unmodified parent duplex. The thermal stability of the DNA duplexes was in the order of normal > Sp borano > Rp borano. CD spectra of all three duplexes exhibited typical B-DNA profile, which closely resembled each other.  相似文献   

5.
The thermodynamic analysis was done for the duplexes formed by fluorescently labeled oligonucleotide targets on a genetic hexanucleotide microchip. All 4096 different hexanucleotide chains were immobilized as probes in individual gel pads of the microchip. To strengthen the hybridization, each hexamer was extended at both ends by one nucleotide from the equimolar mixture of all four nucleotides to serve as nonselective linkers. It has been shown that the melting curves for oligonucleotide duplexes formed on the microchip and in a solution are quite similar. The influence of ionic surrounding has been studied in terms of the hybridization efficiency and discrimination between the mismatched and perfect duplexes. Different approaches have been tested to compensate the dependence of duplex stability on the GC content. It has been demonstrated that the use of chaotropic agents, addition of nonlabeled GC-rich competitor oligonucleotides, as well as creation of a temperature gradient along the microchip reproducing the distribution of melting temperatures, efficiently level out the AT/GC differences. The use of tetramethylammonium chloride for the same purpose was accompanied by weakening to some extent the discrimination between the mismatched duplexes and the perfect ones.  相似文献   

6.
Thermodynamic analysis was performed for the duplexes formed by fluorescently labeled oligonucleotide targets on a generic hexanucleotide microchip. All 4096 different hexanucleotide chains were immobilized as probes in individual gel pads of the microchip. To strengthen the hybridization, each hexamer was extended at both ends by one nucleotide from the equimolar mixture of all four nucleotides to serve as nonselective linkers. It has been shown that the melting curves for oligonucleotide duplexes formed on the microchip and in a solution are quite similar. The influence of ionic surrounding has been studied in terms of the hybridization efficiency and discrimination between the mismatched and perfect duplexes. Different approaches have been tested to compensate the dependence of duplex stability on the GC content. It has been demonstrated that the use of chaotropic agents, addition of nonlabeled GC-rich competitor oligonucleotides, as well as creation of a temperature gradient along the microchip reproducing the distribution of melting temperatures, efficiently level out the AT/GC differences. The use of tetramethylammonium chloride for the same purpose was accompanied by weakening to some extent the discrimination between the mismatched duplexes and the perfect ones.  相似文献   

7.
The effects of single-base-pair near-terminal and terminal mismatches on the dissociation temperature (T(d)) and signal intensity of short DNA duplexes were determined by using oligonucleotide microarrays and neural network (NN) analyses. Two perfect-match probes and 29 probes having a single-base-pair mismatch at positions 1 to 5 from the 5' terminus of the probe were designed to target one of two short sequences representing 16S rRNA. Nonequilibrium dissociation rates (i.e., melting profiles) of all probe-target duplexes were determined simultaneously. Analysis of variance revealed that position of the mismatch, type of mismatch, and formamide concentration significantly affected the T(d) and signal intensity. Increasing the concentration of formamide in the washing buffer decreased the T(d) and signal intensity, and it decreased the variability of the signal. Although T(d)s of probe-target duplexes with mismatches in the first or second position were not significantly different from one another, duplexes with mismatches in the third to fifth positions had significantly lower T(d)s than those with mismatches in the first or second position. The trained NNs predicted the T(d) with high accuracies (R(2) = 0.93). However, the NNs predicted the signal intensity only moderately accurately (R(2) = 0.67), presumably due to increased noise in the signal intensity at low formamide concentrations. Sensitivity analysis revealed that the concentration of formamide explained most (75%) of the variability in T(d)s, followed by position of the mismatch (19%) and type of mismatch (6%). The results suggest that position of the mismatch at or near the 5' terminus plays a greater role in determining the T(d) and signal intensity of duplexes than the type of mismatch.  相似文献   

8.
《Mycological Research》2006,110(6):664-671
Microarray-based detection is limited by variable and inconsistent hybridization intensities across the diversity of probes used in each array. In this paper, we introduce a novel concept for the differentiation of detection targets using duplex melting kinetics. A microarray assay was developed on a PamChip microarray enabling the differentiation of target Phytophthora species using the melting kinetics of probe-target duplexes. In the majority of cases the hybridization kinetics of target and non-target duplexes differed significantly. Analysis of the melting kinetics of duplexes formed by probes with target and non-target DNA was found to be an effective method for determining specific hybridization and was independent of fluctuations in hybridization signal intensity. This form of analysis was more robust than the traditional approach based on hybridization intensity, and enabled the detection of individual Phytophthora species and mixtures thereof.  相似文献   

9.
Design of LNA probes that improve mismatch discrimination   总被引:4,自引:3,他引:1  
Locked nucleic acids (LNA) show remarkable affinity and specificity against native DNA targets. Effects of LNA modifications on mismatch discrimination were studied as a function of sequence context and identity of the mismatch using ultraviolet (UV) melting experiments. A triplet of LNA residues centered on the mismatch was generally found to have the largest discriminatory power. An exception was observed for G–T mismatches, where discrimination decreased when the guanine nucleotide at the mismatch site or even the flanking nucleotides were modified. Fluorescence experiments using 2-aminopurine suggest that LNA modifications enhance base stacking of perfectly matched base pairs and decrease stabilizing stacking interactions of mismatched base pairs. LNAs do not change the amount of counterions (Na+) that are released when duplexes denature. New guidelines are suggested for design of LNA probes, which significantly improve mismatch discrimination in comparison with unmodified DNA probes.  相似文献   

10.
The effects of single-base-pair near-terminal and terminal mismatches on the dissociation temperature (Td) and signal intensity of short DNA duplexes were determined by using oligonucleotide microarrays and neural network (NN) analyses. Two perfect-match probes and 29 probes having a single-base-pair mismatch at positions 1 to 5 from the 5′ terminus of the probe were designed to target one of two short sequences representing 16S rRNA. Nonequilibrium dissociation rates (i.e., melting profiles) of all probe-target duplexes were determined simultaneously. Analysis of variance revealed that position of the mismatch, type of mismatch, and formamide concentration significantly affected the Td and signal intensity. Increasing the concentration of formamide in the washing buffer decreased the Td and signal intensity, and it decreased the variability of the signal. Although Tds of probe-target duplexes with mismatches in the first or second position were not significantly different from one another, duplexes with mismatches in the third to fifth positions had significantly lower Tds than those with mismatches in the first or second position. The trained NNs predicted the Td with high accuracies (R2 = 0.93). However, the NNs predicted the signal intensity only moderately accurately (R2 = 0.67), presumably due to increased noise in the signal intensity at low formamide concentrations. Sensitivity analysis revealed that the concentration of formamide explained most (75%) of the variability in Tds, followed by position of the mismatch (19%) and type of mismatch (6%). The results suggest that position of the mismatch at or near the 5′ terminus plays a greater role in determining the Td and signal intensity of duplexes than the type of mismatch.  相似文献   

11.
The utility of a high-density oligonucleotide microarray (microchip) for identifying strains of five closely related bacilli ( Bacillus anthracis , Bacillus cereus , Bacillus mycoides , Bacillus medusa and Bacillus subtilis ) was demonstrated using an approach that compares the non-equilibrium dissociation rates ('melting curves') of all probe–target duplexes simultaneously. For this study, a hierarchical set of 30 oligonucleotide probes targeting the 16S ribosomal RNA of these bacilli at multiple levels of specificity (approximate taxonomic ranks of domain, kingdom, order, genus and species) was designed and immobilized in a high-density matrix of gel pads on a glass slide. Reproducible melting curves for probes with different levels of specificity were obtained using an optimized salt concentration. Clear discrimination between perfect match (PM) and mismatch (MM) duplexes was achieved. By normalizing the signals to an internal standard (a universal probe), a more than twofold discrimination (> 2.4×) was achieved between PM and 1-MM duplexes at the dissociation temperature at which 50% of the probe–target duplexes remained intact. This provided excellent differentiation among representatives of different Bacillus species, both individually and in mixtures of two or three. The overall pattern of hybridization derived from this hierarchical probe set also provided a clear 'chip fingerprint' for each of these closely related Bacillus species.  相似文献   

12.
A new method of DNA sequencing by hybridization using a microchip containing a set of immobilized oligonucleotides is being developed. A theoretical analysis is presented of the kinetics of DNA hybridization with deoxynucleotide molecules chemically tethered in a polyacrylamide gel layer. The analysis has shown that long-term evolution of the spatial distribution and of the amount of DNA bound in a hybridization cell is governed by "retarded diffusion," i.e., diffusion of the DNA interrupted by repeated association and dissociation with immobile oligonucleotide molecules. Retarded diffusion determines the characteristic time of establishing a final equilibrium state in a cell, i.e., the state with the maximum quantity and a uniform distribution of bound DNA. In the case of cells with the most stable, perfect duplexes, the characteristic time of retarded diffusion (which is proportional to the equilibrium binding constant and to the concentration of binding sites) can be longer than the duration of the real hybridization procedure. This conclusion is indirectly confirmed by the observation of nonuniform fluorescence of labeled DNA in perfect-match hybridization cells (brighter at the edges). For optimal discrimination of perfect duplexes from duplexes with mismatches the hybridization process should be brought to equilibrium under low-temperature nonsaturation conditions for all cells. The kinetic differences between perfect and nonperfect duplexes in the gel allow further improvement in the discrimination through additional washing at low temperature after hybridization.  相似文献   

13.
We have used 2D NMR spectroscopy to study the sugar conformations of oligonucleotides containing a conformationally restricted nucleotide (LNA) with a 2'-O, 4'-C-methylene bridge. We have investigated a modified 9-mer single stranded oligonucleotide as well as three 9- and 10-mer modified oligonucleotides hybridized to unmodified DNA. The single-stranded LNA contained three modifications whereas the duplexes contained one, three and four modifications, respectively. The LNA:DNA duplexes have normal Watson-Crick base-pairing with all the nucleotides in anti-conformation. By use of selective DQF-COSY spectra we determined the ratio between the N-type (C3'-endo) and S-type (C2'-endo) sugar conformations of the nucleotides. In contrast to the corresponding single-stranded DNA (ssDNA), we found that the sugar conformations of the single-stranded LNA oligonucleotide (ssLNA) cannot be described by a major S-type conformer of all the nucleotides. The nucleotides flanking an LNA nucleotide have sugar conformations with a significant population of the N-type conformer. Similarly, the sugar conformations of the nucleotides in the LNA:DNA duplexes flanking a modification were also shown to have significant contributions from the N-type conformation. In all cases, the sugar conformations of the nucleotides in the complementary DNA strand in the duplex remain in the S-type conformation. We found that the locked conformation of the LNA nucleotides both in ssLNA and in the duplexes organize the phosphate backbone in such a way as to introduce higher population of the N-type conformation. These conformational changes are associated with an improved stacking of the nucleobases. Based on the results reported herein, we propose that the exceptional stability of the LNA modified duplexes is caused by a quenching of concerted local backbone motions (preorganization) by the LNA nucleotides in ssLNA so as to decrease the entropy loss on duplex formation combined with a more efficient stacking of the nucleobases.  相似文献   

14.
The DNA polymerase from the bacteriophage T4 is part of a multienzyme complex required for the synthesis of DNA. As a first step in understanding the contributions of individual proteins to the dynamic properties of the complex, e.g., turnover, processivity, and fidelity of replication, the minimal kinetic schemes for the polymerase and exonuclease activities of the gene 43 protein have been determined by pre-steady-state kinetic methods and fit by computer simulation. A DNA primer/template (13/20-mer) was used as substrate; duplexes that contained more single-strand DNA resulted in nonproductive binding of the polymerase. The reaction sequence features an ordered addition of 13/20-mer followed by dATP to the T4 enzyme (dissociation constants of 70 nM and 20 microM) followed by rapid conversion (400 s-1) of the T4.13/20-mer.dATP complex to the T4.14/20-mer.PPi product species. A slow step (2 s-1) following PPi release limits a single turnover, although this step is bypassed in multiple incorporations (13/20-mer-->17/20-mer) which occur at rates > 400 s-1. Competition between correct versus incorrect nucleotides relative to the template strand indicates that the dissociation constants for the incorrect nucleotides are at millimolar values, thus providing evidence that the T4 polymerase, like the T7 but unlike the Klenow fragment polymerases, discriminates by factors > 10(3) against misincorporation in the nucleotide binding step. The exonuclease activity of the T4 enzyme requires an activation step, i.e., T4.DNA-->T4.(DNA)*, whose rate constants reflect whether the 3'-terminus of the primer is matched or mismatched; for matched 13/20-mer the constant is 1 s-1, and for mismatched 13T/20-mer, 5 s-1. Evidence is presented from crossover experiments that this step may represent a melting of the terminus of the duplex, which is followed by rapid exonucleolytic cleavage (100s-1). In the presence of the correct dNTP, primer extension is the rate-limiting step rather than a step involving travel of the duplex between separated exonuclease and polymerase sites. Since the rate constant for 13/20-mer or 13T/20-mer dissociation from the enzyme is 6 or 8 s-1 and competes with that for activation, the exonucleolytic editing by the enzyme alone in a single pass is somewhat inefficient (5 s-1/(8 s-1+5 s-1)), ca. 40%. Consequently, a major role for the accessory proteins may be to slow the rate of enzyme.substrate dissociation, thereby increasing overall fidelity and processivity.  相似文献   

15.
High resolution melting is a new method of genotyping and variant scanning that can be seamlessly appended to PCR amplification. Limitations of genotyping by amplicon melting can be addressed by unlabeled probe or snapback primer analysis, all performed without labeled probes. High resolution melting can also be used to scan for rare sequence variants in large genes with multiple exons and is the focus of this article. With the simple addition of a heteroduplex-detecting dye before PCR, high resolution melting is performed without any additions, processing or separation steps. Heterozygous variants are identified by atypical melting curves of a different shape compared to wild-type homozygotes. Homozygous or hemizygous variants are detected by prior mixing with wild-type DNA. Design, optimization, and performance considerations for high resolution scanning assays are presented for rapid turnaround of gene scanning. Design concerns include primer selection and predicting melting profiles in silico. Optimization includes temperature gradient selection of the annealing temperature, random population screening for common variants, and batch preparation of primer plates with robotically deposited and dried primer pairs. Performance includes rapid DNA preparation, PCR, and scanning by high resolution melting that require, in total, only 3 h when no variants are present. When variants are detected, they can be identified in an additional 3 h by rapid cycle sequencing and capillary electrophoresis. For each step in the protocol, a general overview of principles is provided, followed by an in depth analysis of one example, scanning of CYBB, the gene that is mutated in X-linked chronic granulomatous disease.  相似文献   

16.
DNA probes with conjugated minor groove binder (MGB) groups form extremely stable duplexes with single-stranded DNA targets, allowing shorter probes to be used for hybridization based assays. In this paper, sequence specificity of 3′-MGB probes was explored. In comparison with unmodified DNA, MGB probes had higher melting temperature (Tm) and increased specificity, especially when a mismatch was in the MGB region of the duplex. To exploit these properties, fluorogenic MGB probes were prepared and investigated in the 5′-nuclease PCR assay (real-time PCR assay, TaqMan assay). A 12mer MGB probe had the same Tm (65°C) as a no-MGB 27mer probe. The fluorogenic MGB probes were more specific for single base mismatches and fluorescence quenching was more efficient, giving increased sensitivity. A/T rich duplexes were stabilized more than G/C rich duplexes, thereby leveling probe Tm and simplifying design. In summary, MGB probes were more sequence specific than standard DNA probes, especially for single base mismatches at elevated hybridization temperatures.  相似文献   

17.
Structural features at the extra adenosine bulge sites in DNA duplexes have been elucidated from an NMR analysis of two-dimensional through space and through bond connectivities in the self-complementary d(C-C-G-G-A-A-T-T-C-A-C-G-G) (CAC 13-mer) and d(C-C-G-A-G-A-A-T-T-C-C-G-G) (GAG 13-mer) duplexes in aqueous solution. These studies establish that the extra adenosine stacks into the helix at all temperatures below the onset of the melting transition in solution, and the results are independent of whether the extra adenosine is flanked by cytidines (CAC 13-mer) or guanosines (GAG 13-mer). The NMR parameters establish that the extra adenosine can be accommodated into the helix with the flanking base pairs adopting a wedge-shaped orientation. The resulting perturbation extends out to the C10-G11 phosphodiester backbone adjacent to the bulge segment in both the CAC 13-mer and GAG 13-mer duplexes.  相似文献   

18.
John DM  Weeks KM 《Biochemistry》2002,41(21):6866-6874
2'-Amine-substituted nucleotides in hybridized duplexes can be chemically tagged in an acylation reaction that is faster for mismatched or flexible nucleotides than for residues constrained by base pairing. Here we explore mismatch and hybridization detection using probe oligodeoxynucleotides containing single 2'-aminocytidine or -uridine nucleotides annealed to DNA or RNA targets under nonstringent conditions, below T(m). Consistent with a mechanism in which 2'-amine acylation is gated by local nucleotide flexibility, we find that efficient acylation is correlated with formation of weaker or fewer hydrogen bonds in base pair mismatches. Using 2'-aminocytidine-containing probes annealed to both DNA and RNA targets, mismatches are reliably detected as rapid selective acylation of the 2'-amine group in two sequence contexts. For probe oligonucleotides containing 2'-aminouridine residues, good discrimination between U-A base pairs and U-G mismatches could be obtained for DNA-DNA but not for DNA-RNA duplexes upon the introduction of a single 2'-O-Me group 5' to the 2'-amino nucleotide. The 2'-O-Me group introduces a structural perturbation, presumably to a more A-form-like structure, that exaggerates local flexibility at mismatches in DNA strands. Thus, 2'-amine acylation can be used to interrogate all possible mismatches in DNA-DNA duplexes and mismatches involving 2'-amine-substituted cytidine nucleotides in DNA-RNA heteroduplexes. Applications of this chemistry include detecting and chemically proofreading single nucleotide polymorphisms in both DNA and RNA targets and quantifying absolute amounts of RNA.  相似文献   

19.
The capability of planar rRNA-based oligonucleotide microarrays for single-base-pair discrimination was evaluated using an approach that compares the non-equilibrium dissociation profiles and dissociation temperatures (Tds) of all probe-target duplexes simultaneously. Three sets of 16S rRNA gene specific probes at different levels of specificity were used along with their counter probes for individual sets having either one or two mismatches (MM) to their targets at specific external (next to terminus) and various internal positions. Criteria based on the Td approach and a discrimination index (DI) were proven to be competent in discriminating PM from internal MM duplexes, but not always for external MM duplexes. Maximal DI for separating PM duplexes from ones with two and one internal MM usually occurred at temperatures approximately 5-10 degrees C and 10-15 degrees C, respectively, higher than the Tds of the PM duplexes. Washing buffer type and salt concentration, and MM number and position were shown statistically to affect dissociation profiles, Td, and single-base-pair discriminating capability. The reusability potential of the planar microchip was further demonstrated.  相似文献   

20.
The interactions of oligonucleotide analogs, 12-mers, which contain deoxyribo- or 2'-O-methylribose sugars and methylphosphonate internucleotide linkages with complementary 12-mer DNA and RNA targets and the effect of chirality of the methylphosphonate linkage on oligomer-target interactions was studied. Oligomers containing a single Rp or Sp methylphosphonate linkage (type 1) or oligomers containing a single phosphodiester linkage at the 5'-end followed by 10 contiguous methylphosphonate linkages of random chirality (type 2) were prepared. The deoxyribo- and 2'-O-methylribo- type 1 12-mers formed stable duplexes with both the RNA and DNA as determined by UV melting experiments. The melting temperatures, Tms, of the 2'-O-methylribo-12-mer/RNA duplexes (49-53 degrees C) were higher than those of the deoxyribo-12mer/RNA duplexes (31-36 degrees C). The Tms of the duplexes formed by the Rp isomers of these oligomers were approximately 3-5 degrees C higher than those formed by the corresponding Sp isomers. The deoxyribo type 2 12-mer formed a stable duplex, Tm 34 degrees C, with the DNA target and a much less stable duplex with the RNA target, Tm < 5 degrees C. In contrast, the 2'-O-methylribo type 2 12-mer formed a stable duplex with the RNA target, Tm 20 degrees C, and a duplex of lower stability with the DNA target, Tm < 5 degrees C. These results show that the previously observed greater stability of oligo-2'-O-methylribonucleotide/RNA duplexes versus oligodeoxyribonucleotide/RNA duplexes extends to oligomers containing methylphosphonate linkages and that the configuration of the methylphosphonate linkage strongly influences the stability of the duplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号