首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protease, excreted by a sporogeneous strain of B. megaterium, growing exponentially in a minimum glucose ammonium medium, was isolated. It is a neutral endopeptidase, stabilized by Ca++, inhibited by o-phenanthroline, but not by di-isopropylfluorophosphate. The specificity, studied on insulin B-chain, glucagon, cytochrome c, and dipeptides substrates, indicated the need for a dipeptide backbone with both substituted amino and carboxyl groups. A requirement was observed for a nonpolar lateral chain in the amino acid whose amino group was involved in the peptide bond (Leu, Phe, Ala, He, Val). Rates of hydrolysis varied also with the amino acid whose carboxyl group was involved (e.g., His > Ser > Ala > Gly). In complex medium, supplemented with Yeast Extract, the biosynthesis of the protease was repressed during growth, but the same enzyme was excreted during sporulation. The repression was apparently of the same nature as that controlling sporulation during and after growth (e.g., repression by a mixture of amino acids or high concentration of glucose). An asporogeneous mutant showed a normal product ion of protease under all conditions, and a low intracellular protease turnover after growth. A mutant unable to produce protease showed a normal sporulation and a high protein turnover. This protease, here termed megapeptidase, seems to be a typical growth enzyme, not related to either the sporulation process or to the protein turnover after growth.  相似文献   

2.
A proteolytic activity hydrolyzing denatured proteins of Bacillus megaterium labelled with 35S or 14C amino acids was detected in cells of the asporogenic strain of Bacillus megaterium. The substrate is hydrolyzed by the enzyme or enzymes at optimum pH around 7, their activity being almost completely inhibited by EDTA and o-phenanthroline. PMSF, the inhibitor of serine proteases, is slightly inhibitory. Gel filtration on a Sephadex column separated the protease activity to two or three fractions. The protease activity in cells with the repressed synthesis of protease corresponds to 5-20 mug of substrate degraded per hour by 1 mg of protein at 37 degrees C. It increases five to ten-fold during the derepression. When the intracellular protease activity increases the extracellular enzyme begins to be excreted into the medium. The intracellular protease activity rapidly decreases after the addition of chloramphenicol or of a mixture of amino acids to the derepressed culture. Half or even more of the protease activity is released from the cells during their conversion to protoplasts by means of lysozyme. This "periplasmic" activity remains mostly in the supernatant also after mesosomes have been centrifuged down from the periplasm. A portion of the activity bound in protoplasts sediments together with membrane fraction after their lysis.  相似文献   

3.
An intracellular serine protease (ISP-1) mutant of Bacillus subtilis was created by introducing a frameshift into the coding region of the cloned gene. Intracellular protease activity in the mutant was very low, yet sporulation in both nutrient broth and minimal medium was normal. The rate of bulk protein turnover in the mutant was slightly slower than that in the wild-type strain. These results suggest that the gene for ISP-1 is not essential and that ISP-1 is not the major enzyme involved in protein turnover during sporulation.  相似文献   

4.
Lytic enzyme systems with the ability to break whole cells of yeast are a mixture of several enzymes and virtually all contain beta(1-3)glucanases and some protease. It appears that the presence of these two enzyme activities is necessary to break the two layers of the rigid cell wall. The enzyme system of Cytophaga NCIB 9497 has a high activity towards the walls of yeast and also of bacteria. This article describes the production of this extracellular lytic enzyme system in batch and continuous culture-it was found to be inducible. The synthesis and regulation of the two main constituent enzymes, beta(1-3)glucanase and protease, have been investigated. The synthesis of beta(1-3)glucanase is regulated by bothinduction (by an unknown inducer) and catabolite repression. Highbeta(1-3)glucanase activities were obtained in continuous culture at low dilution rates over a narrow range (0.05-0.10 h(-1)), and there is evidence of the presence of more than one glucanase enzyme. Proteolytic activity appears subject to catabolite repression and made up of the activities of more than one protease enzyme. Productivity and enzyme concentration were increased several fold in continuous culture when compared to batch culture.  相似文献   

5.
Peptidase and protease activities on many different substrates have been determined in several stages of growth of Bacillus megaterium. Extracts of log-phase cells, sporulating cells, and dormant spores of B. megaterium each hydrolyzed 16 different di- and tripeptides. The specific peptidase activity was highest in dormant spores, and the activity in sporulating cells and log-phase cells was about 1.2-fold and 2- to 3-fold lower, respectively. This peptidase acticity was wholly intracellular since extracellular peptidase activity was not detected throughout growth and sporulation. In contrast, intracellular protease activity on a variety of common protein substrates was highest in sporulating cells, and much extracellular activity was also present at this time. The specific activity of intracellular protease in sporulating cells was about 50- and 30-fold higher than that in log-phase cells and dormant spores, respectively. However, the two unique dormant spores proteins known to be the major species degraded during spore germination were degraded most rapidly by extracts of dormant spores, and slightly slower by extracts from log-phase or sporulating cells. The specific activities for degradation of peptides and proteins are compared to values for intracellular protein turnover during various stages of growth.  相似文献   

6.
A thermosensitive sporulation mutant (ts-15) of Bacillus subtilis has been isolated. This mutant when grown at the restrictive temperature (42 degrees C) is unable to sporulate, shows no intracellular protease activity and no protein turnover. These three traits were recovered in two revertants (ts-15R1 and ts-15R2) and were also transmitted together by transformation into the wild type. Immunological studies have shown that when ts-15 is grown at 42 degrees C it synthesizes a 'cryptic' protein with apparently the same antigenic properties as the wild type or as ts-15 mutant grown at the permissive temperature (30 degrees C). The intracellular proteases from the wild type and from ts-15 grown at 30 degrees C and 42 degrees C were completely purified and their properties were studied with respect to their molecular weights, substrate specificity, inhibition pattern, heat inactivation and antigenicity. The molecular weight of the enzyme from the wild type or ts-15 grown at 30 degrees C was 64000--65000 in the absence of sodium dodecylsulfate and 31000--32000 in the presence of sodium dodecylsulfate. It was assumed therefore that the active enzyme is formed from two similar subunits. However, the intracellular protease from ts-15 grown at 42 degrees C showed the same molecular weight of 32000--34000 in the presence or in the absence of sodium dodecylsulfate. On the basis of this experiment and others described in the paper we concluded that the mutation in ts-15 is most likely a point mutation in a structural gene of an intracellular protease and results in an inability to assemble the two subunits into an active form.  相似文献   

7.
A nonlysosomal alkaline protease which degrades the oxidatively modified form of Escherichia coli glutamine synthetase has been purified to apparent homogeneity from rat and mouse liver acetone powders. Its molecular weight was determined to be 300,000 by Sephacryl S-300 gel filtration but results of further studies using high pressure liquid chromatography gel filtration suggest a value of 650,000. Examination of the subunit structure by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed multiple bands of molecular weights between 22,000 and 34,000. The alkaline protease was inhibited by thiol reagents. Phenylmethylsulfonyl fluoride, aprotinin, leupeptin, antipain, and chymostatin partially inhibited the protease. The inhibition by phenylmethylsulfonyl fluoride was prevented by dithiothreitol, and alpha 1-antitrypsin and soybean trypsin inhibitor did not inhibit. No inhibition was observed with metalloprotease inhibitors. The alkaline protease is active over a broad range of pH with optimum activity for the degradation of oxidized glutamine synthetase around pH 9.0. Its activity is not stimulated by MgATP. A study of the products of insulin B chain degradation demonstrated major cleavage sites at Gln13-Ala14, Leu15-Tyr16, Cys(SO3H)19-Gly20, Gln4-His5, and Leu17-Val18. Based on its endopeptidase activity and its inhibitor specificity, the alkaline protease should be classified as a cysteine proteinase. It appears to be distinct from previously described proteinases and is likely involved in nonlysosomal mechanisms of intracellular protein turnover.  相似文献   

8.
The differentiation of mouse 3T3-L1 cells is characterized by an accumulation of cytosolic triglyceride and marked increase in many enzymatic activities involved in triglyceride biosynthesis. The specific activity of one such enzyme, pyruvate carboxylase, increases at least 20-fold and is due to a parallel increase in the intracellular concentration of the protein. Pulse-labeling experiments demonstrated that the increase in the specific activity of pyruvate carboxylase was due to an increase in the rate of enzyme synthesis. In the differentiated cell, pyruvate carboxylase represented 1.9% of the total cellular protein and 1% of the protein radiolabeled during a 1-h pulse. This was 35-and 28-fold higher than in the undifferentiated cell, respectively. The turnover of pyruvate carboxylase in the differentiated cell was similar to that in the undifferentiated cell with the enzyme having a half-life of 28-35 h. The half-life of apopyruvate carboxylase in avidin-treated 3T3-L1 cells was 24 h, indicating that the turnover of the apoenzyme was not significantly different than that of the holoenzyme. Radiolabeling pyruvate carboxylase with [14C]biotin and [3H]leucine demonstrated that the turnover of biotin associated with the enzyme was identical to the turnover of the enzymatic protein.  相似文献   

9.
Kinetics of degradation of labelled proteins was followed in two asporogenic mutants ofBacillus megaterium during incubation in a sporulation medium. Both the mutant producing exocellular protease (KM 1prn +) and the mutant not producing the enzyme (KM 12prn) were found to contain a labile protein fraction, whose proportion decreases with prolonged time of labelling and whose half-life is about 1 h. Most proteins were relatively stable and were degraded at a rate of 1 %/h and 2 %/h in strains KM 1 and KM 12, respectively (half life 70–80 h and 35–40 h in strains KM 1 and KM 12, respectively). The intracellular proteolytic activity of the KM 12 mutant remains practically the same during incubation in the sporulation medium or slowly increases. The labile protein fraction practically disappears from the cells after a 3.5-h incubation. When such a culture is then subjected to a shift-up and transferred again to the sporulation medium, the rate of protein turnover temporarily increases. The temporary increase of the turnover rate is caused by a partial replenishment of the labile protein fraction rather than by an accelerated degradation of the relatively stable fraction. The intracellular proteolytic activity does not increase under these conditions. The wild sporogenic strain ofB. megaterium also contains the labile protein fraction. Its half protein life is 1 h or less. However, the second protein fraction is degraded much more rapidly than in the asporogenic mutants and its half life is 6–7 h.  相似文献   

10.
The role of protein kinase C and phospholipid turnover in the realization of the cytostatic effect of dexamethasone on hormone-sensitive cells of mouse hepatoma 22 has been studied. It was found that dexamethasone added to hepatoma cells induces a rapid (within 30 min) inhibition of the protein kinase C activity with a simultaneous decrease of the 32P incorporation into the major phospholipids (phosphatidylglycerol, phosphatidylcholine, and phosphoinositides). Analysis of correlation between the protein kinase C activity and phospholipid turnover rate revealed that phosphatidylglycerol and phosphatidylcholine synthesis is under the positive control of protein kinase C, whereas that of phosphoinositides is not controlled by the enzyme. A proportional decrease in the rates of metabolism of all the three major phospholipids after addition of the hormone to hepatoma cells suggests that inhibition of phospholipid turnover is one of the primary manifestations of the dexamethasone effect. The hormone-induced decrease in the protein kinase C activity may be regarded as being due to these changes.  相似文献   

11.
Proteolytic signalling cascades control a wide range of physiological responses. In order to respond rapidly, protease activity must be maintained at a basal level: the component zymogens must be sequentially activated and actively degraded. At the same time, signalling cascades must respond precisely: high target specificity is required. The insects have a wide range of trapping- and tight-binding protease inhibitors, which can regulate the activity of individual proteases. In addition, the interactions between component proteases of a signalling cascade can be modified by serine protease homologues. The suicide-inhibition mechanism of serpin family inhibitors gives rapid turnover of both protease and inhibitor, but target specificity is inherently broad. Similarly, the TEP/macroglobulins have extremely broad target specificity, which suits them for roles as hormone transport proteins and sensors of pathogenic virulence factors. The tight-binding inhibitors, on the other hand, have a lock-and-key mechanism capable of high target specificity. In addition, proteins containing multiple tight-binding inhibitory domains may act as scaffolds for the assembly of signalling complexes. Proteolytic cascades regulated by combinations of different types of inhibitor could combine the rapidity of suicide-inhibitors with the specificity lock-and-key inhibitors. This would allow precise control of physiological responses and may turn out to be a general rule.  相似文献   

12.
Cells of Neurospora crassa strain 74A, grown on sucrose for 12 h and transferred to a medium containing protein as sole carbon source, would not produce exocellular protease in significant amounts. When a filtrate from a culture induced to make protease by normal growth on a medium containing protein as principal carbon source was added to an exponential-phase culture in protein medium, exocellular protease was made in amounts similar to those made during normal induction. The material in the culture filtrate that participated in the induction process was identified as protease by its heat lability, molecular weight, and the dependence of induction rate on units of proteolytic activity added to the exponential-phase culture. Induction of the formation of exocellular protease by exponential-phase cells appears to require a protein substrate, added proteolytic activity, and protein synthesis. The protease produced by induced exponential-phase cells was as efficient in promoting induction as normally induced enzyme, whereas constitutive intracellular enzyme was only 50% as efficient. The bacterial protease thermolysin was able to induce exocellular protease at 90.7% of the rate observed with added N. crassa exocellular protease.  相似文献   

13.
A substantially new method has been developed to measure protein turnover. Its basis is the notion that in labeling experiments a secreted protein can be used to determine the specific radioactivity of the intracellular amino acid precursor pool. To measure protein turnover in the Reuber hepatoma H4 cell line, cultures were labeled with [3H]leucine for specified periods after which phenylalanine hydroxylase was isolated and its leucine specific radioactivity determined. Serum albumin secreted by the cultures was also isolated and used to estimate the leucine precursor pool specific radioactivity. The protein half-life of phenylalanine hydroxylase could them be calculated. Experiments performed at long and short labeling times and with high and low concentrations of leucine in the medium yielded equivalent results. Phenylalanine hydroxylase half-life in the H4 cells was investigated under both normal and hydrocortisone-induced growth conditions. Average half-lives of 7.4 and 8.2 h were found for induced and uninduced cultures, respectively. Although these measured enzyme half-lives were not essentially different, the steady state level of phenylalanine hydroxylase was increased 6.2-fold upon hydrocortisone induction, from 0.076 to 0.47 microgram/10(6) cells. The results demonstrated that hydrocortisone induces phenylalanine hydroxylase in the H4 cells by causing an increase in the rate of enzyme synthesis.  相似文献   

14.
Human lysosomal N-acetyl-alpha-neuraminidase is deficient in two lysosomal storage disorders, sialidosis, caused by structural mutations in the neuraminidase gene, and galactosialidosis, in which a primary defect of protective protein/cathepsin A (PPCA) leads to a combined deficiency of neuraminidase and beta-D-galactosidase. These three glycoproteins can be isolated in a high molecular weight multi-enzyme complex, and the enzymatic activity of neuraminidase is contingent on its interaction with PPCA. To explain the unusual need of neuraminidase for an auxiliary protein, we examined, in transfected COS-1 cells, the effect of PPCA expression on post-translational modification, turnover and intracellular localization of neuraminidase. In pulse-chase studies, we show that the enzyme is synthesized as a 46 kDa glycoprotein, which is poorly phosphorylated, does not undergo major proteolytic processing and is secreted. Importantly, its half-life is not altered by the presence of PPCA. However, neuraminidase associates with the PPCA precursor shortly after synthesis, since the latter protein co-precipitates with neuraminidase using anti-neuraminidase antibodies. We further demonstrate by subcellular fractionation of transfected cells that neuraminidase segregates to mature lysosomes only when accompanied by wild-type PPCA, but not by transport-impaired PPCA mutants. These data suggest a novel role for PPCA in the activation of lysosomal neuraminidase, that of an intracellular transport protein.  相似文献   

15.
The rate of protein turnover in asporogenicBacillus megaterium decreases continuously during incubation in a sporulation medium. The capability of equilibration of external amino acids with amino acids in the metabolic pool of non-growing cells was retained for at least 5 h. Leucine, while repressing the synthesis of the exocellular protease, does not significantly influence the course of protein degradationin vivo. Transfer of non-growing cells after 4 h to a fresh sporulation medium does not influence the rate of protein degradation. The gradual decrease of the rate of protein turnover in non-growing cells of the asporogenic variant is thus not an artifact caused by a decreased uptake of amino acids by cells or by conditions under which the protein turnover is determined.  相似文献   

16.
An important goal in the de novo design of enzymes is the control of molecular geometry. To this end, an analog of the protease from human immunodeficiency virus 1 (HIV-1 protease) was prepared by total chemical synthesis, containing a constrained, nonpeptidic type II' beta-turn mimic of predetermined three-dimensional structure. The mimic beta-turn replaced residues Gly16,17 in each subunit of the homodimeric molecule. These residues constitute the central amino acids of two symmetry-related type I' beta-turns in the native, unliganded enzyme. The beta-turn mimic-containing enzyme analog was fully active, possessed the same substrate specificity as the Gly16,17-containing enzyme, and showed enhanced resistance to thermal inactivation. These results indicate that the precise geometry of the beta-turn at residues 15-18 in each subunit is not critical for activity, and that replacement of the native sequence with a rigid beta-turn mimic can lead to enhanced protein stability. Finally, the successful incorporation of a fixed element of secondary structure illustrates the potential of a "molecular kit set" approach to protein design and synthesis.  相似文献   

17.
Affinity tags are widely used as vehicles for the production of recombinant proteins. Yet, because of concerns about their potential to interfere with the activity or structure of proteins, it is almost always desirable to remove them from the target protein. The proteases that are most often used to cleave fusion proteins are factor Xa, enterokinase, and thrombin, yet the literature is replete with reports of fusion proteins that were cleaved by these proteases at locations other than the designed site. It is becoming increasingly evident that certain viral proteases have more stringent sequence specificity. These proteases adopt a trypsin-like fold but possess an unconventional catalytic triad in which Cys replaces Ser. The tobacco etch virus (TEV) protease is the best-characterized enzyme of this type. TEV protease cleaves the sequence ENLYFQG/S between QG or QS with high specificity. The tobacco vein mottling virus (TVMV) protease is a close relative of TEV protease with a distinct sequence specificity (ETVRFQG/S). We show that, like TEV protease, TVMV protease can be used to cleave fusion proteins with high specificity in vitro and in vivo. We compared the catalytic activity of the two enzymes as a function of temperature and ionic strength, using an MBP-NusG fusion protein as a model substrate. The behavior of TVMV protease was very similar to that of TEV protease. Its catalytic activity was greatest in the absence of NaCl, but diminished only threefold with increasing salt up to 200 mM. We found that the optimum temperatures of the two enzymes are nearly the same and that they differ only two-fold in catalytic efficiency, both at room temperature and 4 degrees C. Hence, TVMV protease may be a useful alternative to TEV protease when a recombinant protein happens to contain a sequence that is similar to a TEV protease recognition site or for protein expression strategies that involve the use of more than one protease.  相似文献   

18.
The neutral protease activity of human synovial fluid cells, like that of peripheral blood leucocytes, is located in a granule fraction. It can be solubilised by various agents but only 1 M neutral salts do so without inactivation. Salt-solubilised neutral protease has been purified (300 X) from synovial fluid cells; like preparations obtained in the same way (600 X purified) from peripheral blood leucocytes, it has a broad pH profile of activity (pH 7--10.5) and in this, as well as in substrate specificity and sensitivity to activators and inhibitors, it behaves as a serine-histidine type protease similar to elastase (EC 3.4.21.11). The product showed two major components on polyacrylamide gel electrophoresis. Collagenase or chymotrypsin-like activity were not detected.  相似文献   

19.
In suspension-cultured cells of tomato (Lycopersicon esculentum Mill.), the activity of 1-aminocyclopropane-1-carboxylate synthase (ACC-S) rapidly increases in response to fungal elicitors. The effect of inhibitors of protein kinases and protein phosphatases on the regulation of ACC-S was studied. K-252a, an inhibitor of protein kinases, prevented induction of the enzyme by elicitors and promoted its apparent turnover in elicitor-stimulated cells, causing a 50% loss of activity within 4 to 8 min in both the presence and absence of cycloheximide. Calyculin A, an inhibitor of protein phosphatases, caused a rapid increase of ACC-S in the absence of elicitors and an immediate acceleration of the rate of ACC-S increase in elicitor-stimulated cells. In the presence of cycloheximide there was no such increase, indicating that the effect depended on protein synthesis. Cordycepin, an inhibitor of mRNA synthesis, did not prevent the elicitor-induced increase in ACC-S activity but strongly reduced the K-252a-induced decay and the calyculin A-induced increase of its activity. In vitro, ACC-S activity was not affected by K-252a and calyculin A or by treatments with protein phosphatases. These results suggest that protein phosphorylation/dephosphorylation is involved in the regulation of ACC-S, not by regulating the catalytic activity itself but by controlling the rate of turnover of the enzyme.  相似文献   

20.
Aspartokinase II from Bacillus subtilis was shown by immunochemical methods to be regulated by degradation in response to starvation of cells for various nutrients. Ammonium starvation induced the fastest aspartokinase II decline (t1/2 = 65 min), followed by amino acid starvation (t1/2 = 80 min) and glucose limitation (t1/2 = 120 min). Loss of enzyme activity was closely correlated with the disappearance of the alpha subunit; degradation of the beta subunit was somewhat delayed or slower under some conditions. Pulse-chase experiments demonstrated that aspartokinase II was stable during exponential growth; the synthesis of the enzyme rapidly declined in response to nutrient exhaustion. The degradation of aspartokinase II was interrupted by inhibitors of energy production and protein synthesis but was not changed in a mutant lacking a major intracellular protease. Mutants lacking a normal stringent response displayed only a slight decrease in the rate of aspartokinase II degradation, even though aspartate transcarbamylase was degraded more slowly in the same mutant cells. These results indicate that although energy-dependent degradation of biosynthetic enzymes is a general phenomenon in nutrient-starved B. subtilis cells, the degradation of specific enzymes probably involves different pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号