首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal. The two smooth muscle actins--bovine aorta actin and chicken gizzard actin--differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared. In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably cloer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

2.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal.
The two smooth muscle actins—bovine aorta actin and chicken gizzard actin—differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared.
In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably closer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

3.
The protein chemical characterization of the amino-terminal tryptic peptide of actin from different bovine tissues shows that at least six different actin structural genes are expressed in this mammal.Unique amirio acid sequences are found for actin from skeletal muscle, for actin from heart muscle, for two different actin species from smooth muscle, and for two different actin species typical of non-muscle tissues such as brain and thymus. The presence of more than one actin species in the same tissue (e.g. nonmuscle tissues and smooth muscles) is demonstrated by different amino-terminal peptides which, however, are closely related. The actins from the sarcomeric muscles (e.g. skeletal muscle and heart muscle) show unique but extremely similar amino-terminal peptides. A limited comparison of bovine and avian actins involving smooth and skeletal muscles emphasizes that among higher vertebrates actin divergence involves tissue rather than species specificity.For the lower eukaryotic organism Physarum polycephalum a single actin amino-terminal peptide is found, indicating that only one actin species is present during the plasmodial stage. The amino acid sequence of this peptide although unique reveals a high degree of homology with the corresponding mammalian cytoplasmic actin peptides.Different actin extraction and purification procedures have been compared by the relative yields of the different amino-terminal peptides. The results indicate that the various actin species obtained by the current purification procedures are a true reflection of the actual actins present in the tissue. In addition we compare the resolution provided by either isoelectric focusing analysis of different actins or by the protein chemical characterization of the amino-terminal peptides of different actins. We show that the latter procedure is more suitable for recording changes in actin expression during evolution and differentiation.  相似文献   

4.
J V Pardo  M F Pittenger  S W Craig 《Cell》1983,32(4):1093-1103
We describe two subpopulations of actin antibodies isolated by affinity chromatography from a polyclonal antibody to chicken gizzard actin. One subpopulation recognizes gamma actins from smooth muscle and nonmuscle cells, but does not recognize alpha actin from skeletal muscle. The other subpopulation recognizes determinants that are common to alpha actin from skeletal muscle and the two gamma actin isotypes. Neither antibody recognizes cytoplasmic beta actin. Both antibodies recognize only actins or molecules with determinants that are also present in actins. By immunofluorescence we found that the anti-gamma actin colocalizes with mitochondria in fibers of mouse diaphragm, and that it does not bind detectably to the 1 bands of sarcomeres. The antibody that recognizes both alpha and gamma actins stains 1 bands intensely, as expected. We interpret these observations as preliminary evidence for selective association of gamma actin with skeletal muscle mitochondria and, more broadly, as evidence for subcellular sorting of isoactins.  相似文献   

5.
The actins are a group of highly conserved proteins encoded by a multigene family. We have previously reported that the skeletal muscle actin gene is located on mouse chromosome 3, together with several other unidentified actin DNA sequences. We show here that the gene coding for the cardiac muscle actin, which is closely related to the skeletal muscle actin (1.1% amino acid replacements), is located on mouse chromosome 17. The gene coding for the cytoplasmic beta-actin is located on mouse chromosome 5. Thus, these three actin genes are located on three different chromosomes.  相似文献   

6.
7.
Actin is ubiquitous in eukaryotes, nevertheless its existence has not yet been clearly proven in Tetrahymena. Here we report the cloning and sequencing of an actin gene from the genomic library of Tetrahymena pyriformis using a Dictyostelium actin gene as a probe. The Tetrahymena actin gene has no intron. The predicted actin is composed of 375 amino acids like other actins and its molecular weight is estimated as 41,906. Both T. pyriformis and T. thermophila possess a single species of actin genes which differ in their restriction patterns. Northern hybridization analysis revealed that the actin gene was actively transcribed in vivo. To detect the gene product, we synthesized an N-terminal peptide of the deduced sequence and prepared its antibody. Using an immunoblotting technique, we identified Tetrahymena actin on a two-dimensional gel electrophoretic plate. The actin spot migrated near an added spot of rabbit skeletal muscle actin, but clearly differed from the latter in its isoelectric point and apparent molecular weight. The primary structure of Tetrahymena actin shares about 75% homology equally with those of other representative actins. This value is extremely low as a homology rate between known actins. Tetrahymena actin diverges not only in relatively variable regions of other actins, but also in relatively constant regions. The hydrophilicity levels of two regions (residues 190 to 200 and residues 225 to 235) are also quite different between the Tetrahymena actin and skeletal muscle actin. Thus, we conclude that actin is present in Tetrahymena, but it is one of the most unique actins among the actins known hereto.  相似文献   

8.
Two IgG1, kappa monoclonal antibodies (Mab) against actin have been obtained from a fusion in which chicken gizzard actin was used as the immunogen. One Mab, designated B4, shows a preferential reactivity toward enteric smooth muscle actin but also cross-reacts with skeletal, cardiac, and aorta actins on the basis of immunoblots, ELISA assays, and indirect immunofluorescence. However, this antibody does not react with either cytoplasmic actin in any of these assay systems. A second Mab, designated C4, reacts with all six known vertebrate isoactins as well as Dictyostelium discoideum and Physarum polycephalum actins. Thus B4 Mab appears to react with an epitope that is at least partially shared among the muscle actins but not found in cytoplasmic actins, while C4 Mab binds to an antigenic determinant that has been highly conserved among the actins. The binding sites of both Mabs on skeletal actin overlap that of pancreatic DNase I. Both antibodies bind a SV8 proteolytic product comprising the amino-terminal two-thirds of the actin molecule, and their epitopes appear to overlap since C4 can compete for the binding of B4 to skeletal actin. Neither antibody is able to prevent actin polymerization.  相似文献   

9.
Cells of an established clonal line (RVF-SMC) derived from rat vena cava are described by light and electron microscope methods and biochemical analysis of the major proteins. The cells are flat, and they moderately elongate and form monolayers. They are characterized by prominent cables of microfilaments bundles decoratable with antibodies to actin and alpha-actinin. These bundles contain numerous densely stained bodies and are often flanked by typical rows of surface caveolae and vesicles. The cells are rich in intermediate-sized filaments of the vimentin type but do not show detectable amounts of desmin and cytokeratin filaments. Isoelectric focusing and protein chemical studies have revealed actin heterogeneity. In addition to the two cytoplasmic actins, beta and gamma, common to proliferating cells, two smooth muscle-type actins (an acidic alpha-like and a gamma-like) are found. The major (alpha-type) vascular smooth muscle actin accounts for 28% of the total cellular actin. No skeletal muscle or cardiac muscle actin has been detected. The synthesis of large amounts of actin and vimentin and the presence of at least three actins, including alpha- like actin, have also been demonstrated by in vitro translation of isolated poly(A)+ mRNAs. This is, to our knowledge, the first case of expression of smooth muscle-type actin in a permanently growing cell. We conclude that permanent cell growth and proliferation is compatible with the maintained expression of several characteristic cell features of the differentiated vascular smooth muscle cell including the formation of smooth muscle-type actin.  相似文献   

10.
Interaction of actin from chicken gizzard and from rabbit skeletal muscle with rabbit skeletal muscle myosin was compared by measuring the rate of superprecipitation, the activation of the Mg-ATPase and inhibition of K-ATPase activity of myosin and heavy meromyosin, and determination of binding of heavy meromyosin in the absence of ATP. Both the rate of superprecipitation of the hybrid actomyosin and the activation of myosin ATPase by gizzard actin are lower than those obtained with skeletal muscle actin. The activation of myosin Mg-ATPase by the two actin species also shows different dependence on substrate concentration: with gizzard actin the substrate inhibition starts at lower ATP concentration. The double-reciprocal plots of the Mg-ATPase activity of heavy meromyosin versus actin concentration yield the same value of the extrapolated ATPase activity at infinite actin concentration (V) for the two actins and nearly double the actin concentration needed to produce half-maximal activation (Kapp) in the case of gizzard actin. A corresponding difference in the abilities of the two actin species to inhibit the K-ATPase activity of heavy meromyosin in the absence of divalent cations was also observed. The results are discussed in terms of the effect of substitutions in the amino acid sequence of gizzard and skeletal muscle actins on their interaction with myosin.  相似文献   

11.
The amino-acid sequence of a short subfragment-2 in the amino-terminal portion of subfragment-2 (S-2) derived from adult chicken skeletal muscle myosin was completely determined. Peptides cleaved by cyanogen bromide and by lysyl endopeptidase of S-carboxymethylated S-2, and hydrolytic peptides obtained with trypsin or dilute acetic acid of larger CNBr fragments were isolated and sequenced. This region was composed of 257 amino-acid residues, and hydrophobic and charged residue repeat units were found highly conserved and with a periodicity in 7 or 28 residues. This sequence of the short S-2 fragment of chicken skeletal muscle myosin was compared with the sequence of chicken and rat embryonic skeletal muscle myosins, rabbit skeletal and rabbit cardiac muscle myosin (alpha-myosin heavy chain), and 95.3%, 86.8%, 89.9% and 94.2% sequence identities were observed, respectively.  相似文献   

12.
We elicited antibodies in rabbits to actin purified from body wall muscle of the marine mollusc, Aplysia californica. We found that this antiactin has an unusual specificity: in addition to reacting with the immunogen, it recognizes cytoplasmic vertebrate actins but not myofibrillar actin. Radioimmunoassay showed little or no cross-reaction with actin purified from either chicken gizzard or rabbit skeletal muscle. Immunocytochemical studies with human fibroblasts and L6 myoblasts revealed intense staining of typical cytoplasmic cables. Myofibrils were not stained after treatment of human and frog skeletal muscle with the antibody, although the distribution of immunofluorescence suggested that cytoplasmic actin is associated with membrane systems in the muscle fiber. The antibody may therefore be especially suited for studying the localization of cytoplasmic actin in skeletal muscle cells even in the presence of a great excess of the myofibrillar form.  相似文献   

13.
Nuclear matrix prepared from mouse leukemia L5178Y cells contained not only the two common actin isomers, beta and gamma actins, but also two additional acidic species of actin (pI 5.1 and 5.3). An anti-actin antibody recognized these acidic species as well as beta and gamma actins on a nitrocellulose filter following western blotting of two-dimensional electrophoresis. These acidic species were co-purified with beta and gamma actins using DNase I-Sepharose affinity chromatography on the nuclear matrix. Limited digestion of the acidic actin with protease V8 or trypsin gave very similar peptide fragments as did digestion of beta and gamma actins. These acidic actins were found to be distributed in the nuclear fraction, but were scarcely detectable in the cytoplasmic fraction. One of the acidic actins (pI 5.3) was found in all subnuclear fractions (DNase extract, high-salt extract and nuclear matrix), while the other species, the most acidic actin (pI 5.1), was localized predominantly in the nuclear matrix.  相似文献   

14.
Plasmids p749, p106, and p150 contain cDNA inserts complementary to rat skeletal muscle actin mRNA. Nucleotide sequence analysis indicates the following sequence relationships: p749 specifies codons 171 to 360; p150 specifies codons 357 to 374 together with 120 nucleotides of the 3'-non-translated region; p106 specifies the last actin amino acid codon, the termination codon and the entire 3' non-translated region. Plasmid p749 hybridized with RNA extracted from rat skeletal muscle, cardiac muscle, smooth (stomach) muscle, and from brain. It also hybridizes well with RNA extracted from skeletal muscle and brain of dog and chick. Plasmid p106 hybridized specifically with rat striated muscles (skeletal and cardiac muscle) mRNA but not with mRNA from rat stomach and from rat brain. It also hybridized to RNA extracted from skeletal muscle of rabbit and dog but not from chick. Thermal stability of the hybrids and sensitivity to S1 digestion also indicated substantial divergence between the 3' untranslated end of rat and dog skeletal muscle actins. The investigation shows that the coding regions of actin genes are highly conserved, whereas the 3' non-coding regions diverged considerably during evolution. Probes constructed from the 3' non-coding regions of actin mRNAs can be used to identify the various actin mRNA and actin genes.  相似文献   

15.
Salmonids utilize a unique, class II isoactin in slow skeletal muscle. This actin contains 12 replacements when compared with those from salmonid fast skeletal muscle, salmonid cardiac muscle and rabbit skeletal muscle. Substitutions are confined to subdomains 1 and 3, and most occur after residue 100. Depending on the pairing, the 'fast', 'cardiac' and rabbit actins share four, or fewer, substitutions. The two salmonid skeletal actins differ nonconservatively at six positions, residues 103, 155, 278, 281, 310 and 360, the latter involving a change in charge. The heterogeneity has altered the biochemical properties of the molecule. Slow skeletal muscle actin can be distinguished on the basis of mass, hydroxylamine cleavage and electrophoretic mobility at alkaline pH in the presence of 8 m urea. Further, compared with its counterpart in fast muscle, slow muscle actin displays lower activation of myosin in the presence of regulatory proteins, and weakened affinity for nucleotide. It is also less resistant to urea- and heat-induced denaturation. The midpoints of the change in far-UV ellipticity of G-actin versus temperature are approximately 45 degrees C ('slow' actin) and approximately 56 degrees C ('fast' actin). Similar melting temperatures are observed when thermal unfolding is monitored in the aromatic region, and is suggestive of differential stability within subdomain 1. The changes in nucleotide affinity and stability correlate with substitutions at the nucleotide binding cleft (residue 155), and in the C-terminal region, two parts of actin which are allosterically coupled. Actin is concluded to be a source of skeletal muscle plasticity.  相似文献   

16.
Summary Invertebrate actins resemble vertebrate cytoplasmic actins, and the distinction between muscle and cytoplasmic actins in invertebrates is not well established as for vertebrate actins. However, Bombyx and Drosophila have actin genes specifically expressed in muscles. To investigate if the distinction between muscle and cytoplasmic actins evidenced by gene expression analysis is related to the sequence of corresponding genes, we compare the sequences of actin genes of these two insect species and of other Metazoa. We find that insect muscle actins form a family of related proteins characterized by about 10 muscle-specific amino acids. Insect muscle actins have clearly diverged from cytoplasmic actins and form a monophyletic group emerging from a cluster of closely related proteins including insect and vertebrate cytoplasmic actins and actins of mollusc, cestode, and nematode. We propose that muscle-specific actin genes have appeared independently at least twice during the evolution of animals: insect muscle actin genes have emerged from an ancestral cytoplasmic actin gene within the arthropod phylum, whereas vertebrate muscle actin genes evolved within the chordate lineage as previously described.Offprint requests to.: N. Mounier  相似文献   

17.
Partial tryptic cleavage products of pure actin from rabbit skeletal muscle and chicken gizzard are compared by two-dimensional electrophoresis in polyacrylamide gels with respect to isoelectric point and molecular weight. While the intact polypeptides (Mr 42,000) have different isoelectric points, two large cleavage products (Mr 35,000) generated from both both actin species have identical isoelectric points and identical molecular weights. These relatively trypsin-resistant cleavage products are presumably identical to the known "core actin" fragments which lack the aminoterminal region of the polypeptide chain. Therefore the differences that are responsible for the different isoelectric points of rabbit skeletal muscle actin and chicken gizzard actin seem to be restricted to the aminoterminal part of the actin polypeptide chains as was proposed on the basis of partial amino acid sequence data.  相似文献   

18.
To investigate the precise localization of cytoplasmic gamma actin in skeletal muscle and the relationship to dystrophin molecules, we designed an antibody against the N-terminal peptide of cytoplasmic gamma actin. Western blot analysis using SDS-PAGE and isoelectric focusing (IEF) gel revealed that the antibody reacted only with the actin isoforms having gamma motility, confirming that the antibody is specific to the cytoplasmic (nonmuscle) gamma actin. Immunohistochemical analysis of the skeletal muscle of the adult mouse revealed a dot-like staining pattern of the antibody in transverse sections and a striated staining pattern in longitudinal sections. The double immunostaining technique revealed the colocalization of cytoplasmic gamma actin with alpha-actinin, implying the localization of the actin on the Z-disc. Contrary to previous findings (1), we did not detect the colocalization of cytochrome oxidase, a mitochondria marker, with this actin.  相似文献   

19.
Actin is of fundamental importance to all eukaryotic cells. Of the six mammalian actins, beta (beta) and gamma (gamma) cytoplasmic are the isoforms found in all nonmuscle cells and differ by only four amino acids at the amino-terminal region. Both genes are regulated temporally and spatially, though no differences in protein function have been described. Using fluorescent double in situ hybridization we describe the simultaneous intracellular localization of both beta and gamma actin mRNA. This study shows that myoblasts differentially segregate the beta and gamma actin mRNAs. The distribution of gamma actin mRNA, only to perinuclear and nearby cytoplasm, suggests a distribution based on diffusion or restriction to nearby cytoplasm. The distribution of beta actin mRNA, perinuclear and at the cell periphery, implicates a peripheral localizing signal which is unique to the beta isoform. The peripheral beta actin mRNA corresponded to cellular morphologies, extending processes, and ruffling edges that reflect cell movement. Total actin and gamma actin protein steady-state distributions were identified by specific antibodies. gamma actin protein was found in both stress fibers and at the cell plasma membrane and does not correspond to its mRNA distribution. We suggest that localized protein synthesis rather than steady-state distribution functionally differentiates between the actin isoforms.  相似文献   

20.
It has been shown in two different ways that beta and gamma actins synthesized in vitro are acetylated and that the minor species of actin, delta and epsilon, are nonacetylated forms of beta and gamma actin, respectively. Firstly, additon of acetyl-CoA to the wheat germ system translating poly(A)-containing RNA from unfused rat L6 myoblasts, resulted in an increase in the synthesis of beta and gamma actins at the expense of delta and epsilon actins. Secondly, beta and gamma actins were labeled when synthesized in vitro in the presence of [3H]acetyl-CoA. No label was detectable in delta and epsilon actins. By extrapolation this indicates that beta and gamma actin are acetylated in vivo, probably at the N-terminus. beta and gamma actins synthesized in vivo contain a N tau-methylhistidine residue, but no methylation of beta and gamma actins synthesized in vitro was detectable, using S-[3H]adenosylmethionine as a methyl donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号