首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ADP-ribosylation) of a DNA topoisomerase   总被引:11,自引:0,他引:11  
A DNA topoisomerase activity, copurifying with poly(ADP-ribose) synthetase from calf thymus, is greater than 95% inhibited if extensive poly(ADP-ribosylation) is allowed to occur. The inhibited DNA topoisomerase, which has drastically different elution properties on hydroxylapatite, can be reactivated by mild alkaline treatment. These results are consistent with a poly(ADP-ribosylation) of the DNA topoisomerase and covalent attachment of the poly(ADP-ribose) moieties to the topoisomerase by alkali-labile bonds.  相似文献   

2.
Escherichia coli heat-labile enterotoxin (labile toxin, LT) catalyzed the hydrolysis of NAD to ADP-ribose and nicotinamide and the ADP-ribosylation of arginine (Moss, J., and Richardson, S.H. (1978) J. Clin. Invest. 62, 281-285). Analysis of the product of the ADP-ribosylation of arginine by nuclear magnetic resonance spectroscopy indicated that the reaction was stereospecific and resulted in the formation of alpha-ADP-ribosyl-L-arginine. This reaction product rapidly anomerized to yield a mixture of the alpha and beta forms. In the presence of [adenine-U-14C]NAD, E. coli enterotoxin catalyzed the transfer of the radiolabel to proteins; the ADP-ribosylation of proteins was inhibited by arginine methyl ester, an alternative substrate. Digestion of the 14C-protein with snake venom phosphodiesterase released predominantly 5'-AMP. No product was obtained with a mobility similar to that of 2'-(5'-phosphoribosyl)-5'-AMP. This result is consistent with the covalent attachment by the enterotoxin of ADP-ribose rather than poly(ADP-ribose) to protein. Thus, LT is catalytically equivalent to choleragen, an enterotoxin of Vibrio cholerae, and activates adenylate cyclase through a similar stereospecific ADP-ribosylation reaction.  相似文献   

3.
Anti-[ADP-ribosylated elongation factor 2 (EF-2)] antiserum has been used to immunoprecipitate the modified form of EF-2 from polyoma-virus-transformed baby hamster kidney (pyBHK) cells [Fendrick, J. L. & Iglewski, W. J. (1989) Proc. Natl Acad. Sci. USA 86, 554-557]. This antiserum also immunoprecipitates a 32P-labelled protein of similar size to EF-2 from a variety of primary and continuous cell lines derived from many species of animals. One of these cell lines, chinese hamster ovary CHO-K1 cells was further characterized. The time course of labelling of ADP-ribosylated EF-2 with [32P]orthophosphate was similar in pyBHK cells and in CHO-K1 cells. The kinetics of labelling were more rapid for cells cultured in 2% serum than 10% serum, with incorporation of 32P reaching a maximum at 6 h and 10 h, respectively. EF-2 mutants of pyBHK and CHO-K1 cells resistant to diphtheria-toxin-catalyzed ADP-ribosylation of EF-2 remain sensitive to cellular ADP-ribosylation of EF-2. The 32P-labelled moiety of ADP-ribosylated EF-2 was digested by snake venom phosphodiesterase and the product was identified as AMP. The same 32P-labelled tryptic peptide was modified by toxin in wild-type EF-2 and by the cellular transferase in mutant EF-2. When purified EF-2 from pyBHK cells was incubated with [carbonyl-14C]nicotinamide and diphtheria toxin fragment A, under conditions for reversal of the ADP-ribosylation reaction, [14C]NAD was generated. The results suggest that cellular ADP-ribosylated EF-2 exists in a variety of cell types, and the ribosylated product is identical to that produced by toxin ADP-ribosylation of EF-2, except in diphthamide mutant cells. Studies with the mutant cell lines indicate that the toxin and the cellular transferase, however, recognize different determinants at the ADP-ribose acceptor site in EF-2. The cellular transferase does not require the diphthamide modification of the histidine ring in the amino acid sequence of EF-2 for the transfer of ADP-ribose to the ring. Therefore, we would expect the cellular transferase active site to be similar to, but not identical to, the critical amino acids demonstrated in the active site of diphtheria toxin and Pseudomonas exotoxin A.  相似文献   

4.
ADP-ribosylation in permeable HeLa S3 cells   总被引:2,自引:0,他引:2  
ADP-ribosylation in permeabilized metaphase and interphase cells using [32P]NAD at pH 8.0 have been compared. Incorporation into trichloroacetic acid insoluble material was 4-5-times greater in metaphase cells. 17-22% was in the soluble fraction which contained material released from the cells, 16-22% in the 0.2 M HCl extract (histones) of the cell ghosts and the remaining activity in the residual fraction. Fractions were analyzed using dodecylsulphate/polyacrylamide gel electrophoresis at pH 6.0. The soluble fractions from metaphase and interphase cells exhibited three common unidentified ADP-ribosylated proteins corresponding to 78 000, 54 000 and 36 000 Da. In addition metaphase cells contained several other ADP-ribosylated proteins not present in interphase cells. The 0.2 M HCl extracts gave from metaphase cells radioactivity in the 32 000-39 000-Da region suggesting ADP-ribosylation of histone H1 with up to 10 residues of ADP-ribose and in the 17 000-20 000-Da region indicating ADP-ribosylation of core histones. The pattern of ADP-ribosylation of core histone in metaphase and interphase cells was qualitatively similar whereas the number of ADP-ribose residues per H1 molecule was higher in metaphase cells. The residual fraction contained free poly(ADP-ribose) and oligo(ADP-ribose). The results do not lend support to a special function of ADP-ribosylated histones in the mitotic event while certain ADP-ribosylated non-histone proteins may be specific for metaphase cells.  相似文献   

5.
Poly(ADP-ribosylation) of DNA topoisomerase I from calf thymus   总被引:13,自引:0,他引:13  
We demonstrate that the activity of the major DNA topoisomerase I from calf thymus is severely inhibited after modification by purified poly(ADP-ribose) synthetase. Polymeric chains of poly(ADP-ribose) are covalently attached to DNA topoisomerase I. These observations with highly purified enzymes suggest that poly(ADP-ribosylation) may be a cellular mechanism for modulating DNA topoisomerase I activity in response to the state of DNA in the nucleus. Although extensive poly(ADP-ribosylation) of the Mr = 100,000 DNA topoisomerase I from calf thymus resulted in greater than 90% enzyme inhibition, exogenous poly(ADP-ribose) does not, by itself, inhibit topoisomerase activity. After modification, the apparent molecular weight of both the topoisomerase enzyme protein and of the topoisomerase enzyme activity was increased. In vitro, the extent of modification of DNA topoisomerase I could be controlled either by changing the ratio of topoisomerase to the synthetase or by varying the reaction time. More than 40 residues of ADP ribose per topoisomerase molecule could be added by the synthetase. Analysis of a poly(ADP-ribosylated) topoisomerase preparation that was about 50% inhibited revealed an average polymer chain length of 7.4, with 1-2 chains per enzyme molecule.  相似文献   

6.
Isolated rat pancreatic polynucleosomes were poly(ADP-ribosylated) with purified calf thymus poly(ADP-ribose) polymerase. A time course study was performed using an NAD concentration of 200 microM and changes in nucleosomal structure were investigated by means of electron microscopy visualization and sedimentation velocity determinations. In parallel, analyses of histone H1 poly(ADP-ribosylation) and determinations of DNA polymerase alpha activity on ADP-ribosylated polynucleosomes were done at different time intervals. A direct kinetic correlation between ADP-ribose incorporation, polynucleosome relaxation amd histone H1 hyper-ADP-ribosylation was established. In addition, DNA polymerase alpha activity was highly stimulated on ADP-ribosylated polynucleosomes as compared to control ones, suggesting increased accessibility of DNA to enzymatic action. Because of the strong evidence implicating histone H1 in the maintenance of higher-ordered chromatin structures, the present study may provide a basis for the interpretation of the involvement of the histone H1 ADP-ribosylation reaction in DNA rearrangements during DNA repair, replication or gene expression.  相似文献   

7.
The distribution of (ADP-ribose)n synthesized from [14C]NAD labeled at the adenyl ring in several protein fractions of isolated rat brain nuclei was studied. Preferential ADP-ribosylation of nonhistone nuclear proteins was shown to occur. It was demonstrated that pol (ADP-ribose)polymerase and DNA-topoisomerase II are located spatially close to each other. A correlation between ADP-ribosylation and the activity of nuclear matrix DNA-topoisomerase II was established.  相似文献   

8.
We present evidence that T3 can alter the ADP-ribosylation of chromatin associated proteins. Nuclei from GH1 cells were incubated with [adenylate-32P]NAD and the radioactivity incorporated into histone and non-histone proteins was quantitated and analyzed by gel electrophoresis and autoradiography. Incubation of GH1 cells for 24 h with T3 lowered by 40-70% the [32P]ADP-ribose incorporated into nuclear proteins. However, incubation for 3 h with T3 resulted in a stimulation instead of a decrease of in vitro [32P]ADP-ribose incorporation. The major ADP-ribosylated component electrophoresed as a 120,000 molecular mass non-histone protein, and radiolabeled histones were also observed. The same protein species were observed for all the experimental groups and T3 affected the extent of ADP-ribosylation but did not alter the sedimentation of the [32P]ADP-ribosylated components excised from chromatin after micrococcal nuclease digestion.  相似文献   

9.
L A Witters  J M McDermott 《Biochemistry》1986,25(22):7216-7220
Because of certain similarities between acetyl-CoA carboxylase (ACC) and tubulin, and the recent demonstration of the ADP-ribosylation of tubulin by cholera toxin, we have investigated a potential role for ADP-ribosylation in the regulation of ACC activity. Incubation of purified rat liver ACC with cholera toxin in the presence of millimolar concentrations of [adenylate-32P]NAD results in a time-dependent incorporation of ADP-ribose into ACC of greater than 2 mol/mol of enzyme subunit, accompanied by a marked inactivation of enzyme activity. This effect is not mimicked by pertussis toxin, ADP-ribose, or ribose 5-phosphate. Incubation of labeled ACC with snake venom phosphodiesterase and alkaline hydrolysis release 32P-products tentatively identified by high-performance liquid chromatography as 5'-[32P]AMP and [32P]ADP-ribose, respectively. These data are consistent with a mono-ADP-ribosylation of ACC catalyzed by cholera toxin. Phosphodiesterase treatment of inactivated ACC partially restores enzyme activity. The effects of ADP-ribosylation of ACC are expressed both as a decrease in the enzyme Vmax and as an increase in the apparent Ka for citrate. These results suggest that ACC might be a substrate for endogenous ADP-ribosyltransferases and that this covalent modification could be an important regulatory mechanism for the modulation of fatty acid synthesis in vivo.  相似文献   

10.
Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins typical of most eukaryotic cells. This process participates in DNA replication and repair and is mainly regulated by two enzymes, poly(ADP-ribose) polymerase, which is responsible for the synthesis of polymers of ADP-ribose, and poly(ADP-ribose) glycohydrolase, which performs polymer degradation. The aim of this work was to investigate in the cockroach Periplaneta americana L. (Blattaria: Blattidae) the behaviour of poly(ADP-ribosylation). In particular, we addressed: (i) the possible modulation of poly(ADP-ribosylation) during the embryonic development; (ii) the expression of poly(ADP-ribose) polymerase and glycohydrolase in different tissues; and (iii) the role of poly(ADP-ribosylation) during spermatogenesis. In this work we demonstrated that: (i) as revealed by specific biochemical assays, active poly(ADP-ribose) polymerase and glycohydrolase are present exclusively in P. americana embryos at early stages of development; (ii) an activity carrying out poly(ADP-ribose) synthesis was found in extracts from testes; and (iii) the synthesis of poly(ADP-ribose) occurs preferentially in differentiating spermatids/spermatozoa. Collectively, our results indicate that the poly(ADP-ribosylation) process in P. americana, which is a hemimetabolous insect, displays catalytical and structural features similar to those described in the holometabolous insects and in mammalian cells. Furthermore, this process appears to be modulated during embryonic development and spermatogenesis.  相似文献   

11.
Arginine adenosine-5′-diphosphoribosylation (ADP-ribosylation) is an enzyme-catalyzed, potentially reversible posttranslational modification, in which the ADP-ribose moiety is transferred from NAD+ to the guanidino moiety of arginine. At 540 Da, ADP-ribose has the size of approximately five amino acid residues. In contrast to arginine, which, at neutral pH, is positively charged, ADP-ribose carries two negatively charged phosphate moieties. Arginine ADP-ribosylation, thus, causes a notable change in size and chemical property at the ADP-ribosylation site of the target protein. Often, this causes steric interference of the interaction of the target protein with binding partners, e.g. toxin-catalyzed ADP-ribosylation of actin at R177 sterically blocks actin polymerization. In case of the nucleotide-gated P2X7 ion channel, ADP-ribosylation at R125 in the vicinity of the ligand-binding site causes channel gating. Arginine-specific ADP-ribosyltransferases (ARTs) carry a characteristic R-S-EXE motif that distinguishes these enzymes from structurally related enzymes which catalyze ADP-ribosylation of other amino acid side chains, DNA, or small molecules. Arginine-specific ADP-ribosylation can be inhibited by small molecule arginine analogues such as agmatine or meta-iodobenzylguanidine (MIBG), which themselves can serve as targets for arginine-specific ARTs. ADP-ribosylarginine specific hydrolases (ARHs) can restore target protein function by hydrolytic removal of the entire ADP-ribose moiety. In some cases, ADP-ribosylarginine is processed into secondary posttranslational modifications, e.g. phosphoribosylarginine or ornithine. This review summarizes current knowledge on arginine-specific ADP-ribosylation, focussing on the methods available for its detection, its biological consequences, and the enzymes responsible for this modification and its reversal, and discusses future perspectives for research in this field.  相似文献   

12.
The relationship between endogenous ADP-ribosylation of chromosomal proteins and glucocorticoid-regulated mouse mammary tumor virus gene expression was investigated in cultured mouse mammary tumor cells. It was observed that glucocorticoids quickly decreased endogenous (ADP-ribose)n on the nonhistone high mobility group (HMG) 14 and 17 proteins. The half-time for this loss was 8 and 17 min, respectively, for the two proteins. (ADP-ribose)n on HMG 1 and 2 and on histone H1 was less susceptible to hydrolysis during glucocorticoid treatment. The rapid loss of (ADP-ribose)n from HMG 14 and 17 occurred in the same time frame as the induction of mouse mammary tumor virus RNA synthesis by glucocorticoids in these cells (Young, H. A., Shih, T. Y., Scolnick, E. M., and Parks, W. P. (1977) J. Virol. 21, 139-149). 3-Amino-benzamide, a specific inhibitor of (ADP-ribose)n synthetase, increased mouse mammary tumor virus RNA levels with an accompanying decrease in endogenous ADP-ribosylation of HMG 14 and 17. These results show that a decrease in endogenous ADP-ribosylation of HMG 14 and 17 is a consequence of glucocorticoid action and suggest that loss of (ADP-ribose)n from these proteins may be an important event in mouse mammary tumor virus gene expression.  相似文献   

13.
In order to analyze the fluctuation of the poly ADP-ribosylation level during the cell cycle of synchronously growing He La S3 cells, we have developed three different assay systems; intact and disrupted nuclear systems, and poly(ADP-ribose) polymerase in vitro system. The optimum conditions for poly ADP-ribosylation in each assay system were similar except the pH optimum. Under the conditions favoring poly ADP-ribosylation, little radioactivity incorporated into poly(ADP-ribose) was lost after termination of the poly ADP-ribosylation by addition of nicotinamide which inhibits the reactions by more than 90% in any system. In the intact nuclear system, the level of poly ADP-ribosylation increased slightly subsequent to late G2 phase with a peak at M phase. The high level of poly ADP-ribosylation in M phase was also confirmed by using selectively collected mitotic cells which were arrested in M phase by Colcemid. The level in mitotic chromosomes was 5.1-fold higher than that in the nuclei from logarithmically growing cells. Colcemid has no effect on the poly ADP-ribosylation. In the disrupted nuclear system, a relatively high level of poly ADP-ribosylation was observed during mid S-G2 phase. When poly(ADP-ribose) polymerase was extracted from the nuclei with a buffer solution containing 0.3 M KCl, more than 90% of the enzyme activity was recovered. The poly(ADP-ribose) polymerase in vitro system was dependent on both DNA and histone—10 μg each. In the enzyme system, enzyme activity was detected throughout the cell cycle and was observed to be highest in G2 phase. The high level at M phase observed in the intact nuclear system was not seen in the other two systems. Under the assay conditions, little influence of poly(ADP-ribose) degrading enzymes was noted on the level of poly ADP-ribosylation in any of the three systems. This was confirmed at various stages during the cell cycle through pulse-labeling and “chasing” by adding nicotinamide.  相似文献   

14.
Inactivation of bacterial glutamine synthetase by ADP-ribosylation   总被引:2,自引:0,他引:2  
Glutamine synthetase from Escherichia coli was inactivated by chemical modification with arginine-specific reagents (Colanduoni, J. A., and Villafranca, J. J. (1985) Biochem. Biophys. Res. Commun. 126, 412-418). E. coli glutamine synthetase was also a substrate for an erythrocyte NAD:arginine ADP-ribosyltransferase. Transfer of one ADP-ribosyl group/subunit of glutamine synthetase caused loss of both biosynthetic and gamma-glutamyltransferase activity. The ADP-ribose moiety was enzymatically removed by an erythrocyte ADP-ribosylarginine hydrolase, resulting in return of function. The site of ADP-ribosylation was arginine 172, determined by isolation of the ADP-ribosylated tryptic peptide. Arginine 172 lies in a central loop that extends into the core formed by the 12 subunits of the native enzyme. The central loop is important in anchoring subunits together to yield the spatial orientation required for catalytic activity. ADP-ribosylation may thus inactivate glutamine synthetase by disrupting the normal subunit alignment. Enzyme-catalyzed ADP-ribosylation may provide a simple, specific technique to probe the role of arginine residues in the structure and function of proteins.  相似文献   

15.
The effects of Ca2+ and calmodulin on endogenously catalyzed ADP-ribosylation were investigated in adipocyte plasma membranes. Four specific proteins of 70, 65, 61 and 52 kDa were labeled with [32P]ADP-ribose and ADP-ribosylation of the proteins was highly dependent upon the conditions employed. ADP-ribosylation of the 70 kDa protein was observed only in membranes supplemented with Ca2+. Maximal incorporation of [32P] into the protein was achieved with free Ca2+ concentrations of 90 microM. Calcium-stimulated ADP-ribosylation of the 70 kDa protein was inhibited by calmodulin. Half-maximal inhibition was observed in membranes incubated with 1.2 microM calmodulin. The effect of calmodulin was characterized by an inhibition of the incorporation of [32P]ADP-ribose as opposed to a stimulation of its removal. ADP-ribosylation of the 61 kDa protein was not altered by added Ca2+ and/or calmodulin whereas ADP-ribosylation of the 65 kDa protein was partially (50%) inhibited by free Ca2+ concentrations between 10(-6) - 10(-5) M. These results provide evidence that the adipocyte plasma membrane contains ADP-ribosyltransferase activities and demonstrate that ADP-ribosylation of a 70 kDa protein is regulated by Ca2+ and calmodulin.  相似文献   

16.
Constitutive and gamma-induced ADP-ribosylation of nuclei and mitochondrial proteins in 2- and 29-month-old rats was studied. ADP-ribosylation was determined by binding of [3H]-adenin with the proteins after incubation of cellular organells in reaction mixture supplemented with [adenin-2,8-3H]-NAD. It was detected that the level of total protein ADP-ribosylation in the nuclei is 4.5-6.2 times higher than in the mitochondria. By inhibition of poly(ADP-ribose) polymerase (PARP) with 3-aminobenzamidine and treatment of ADP-ribosylated proteins with phosphodiesterase I, it was demonstrated that about 90% of [3H]-adenin bound by proteins in the nuclei and 70% in the mitochondria was the result of PARP activity. The level of total ADP-ribosylation of nuclear and mitochondrial proteins in the tissues of old rats was reliably lower than in young animals. This reduction of ADP-ribosylation in old animals is the result of the lower activity of PARP, not of mono(ADP-ribosyl) transferase (MART). The level of ADP-ribosylation of proteins in the nuclei of brain and spleen cells of 2-month-old rats irradiated with of 5 and 10 Gy was by 49-109% higher than in the control. At the same doses of radiation, the level of ADP-ribosylation of nuclear proteins in brain and spleen of old rats increased only by 29-65% compared to the control. Unlike cell nuclei, the radiation-induced activation of ADP-ribosylation in mitochondria was less expressed: the level of ADP-ribosylation increased by 34-37% in young rats and by 11-27% in old animals. This increased binding of ADP-ribose residues by the proteins of nuclei and mitochondria from tissues of gamma-irradiated rats is exceptionally conditioned by activation of poly(ADP-ribosyl)ation because the level of mono(ADP-ribosyl)ation remains constant. The results of this study enable the suggestion that poly(ADP-ribosyl)ation also occurs in the mitochondria of brain and spleen cells of the gamma-irradiated rats, though less pronounced than in cell the cell nuclei of these tissues. Thus, one of the probable causes of the less efficient repair of radiation-induced DNA damage in old organisms is a decline of both constitutive and induced poly(ADP-ribosyl)ation of proteins in cell nucleus and mitochondria.  相似文献   

17.
Effect of polyamines on ADP-ribosylation by chick-embryo-liver nuclei   总被引:1,自引:0,他引:1  
Effects of polyamines on poly(ADP-ribose) formation and DNA synthesis in the chick-embryo-liver nuclei were investigated. When 14-day chick-embryo-liver nuclei were incubated with [3H]NAD in the presence of 1 mM spermine, 2.5 mM spermidine, or 3.5 mM putrescine, a 9-fold increase in poly)ADP-ribose) formation was observed. Nuclei treated with nuclease showed high poly(ADP-ribose) synthetase activity as spermine-treated nuclei. However, no further increase in the polymer formation by polyamines was detected in the nuclease-treated nuclei. We found that an increase in the polymer formation by spermine was the result of an increase in both chain length and chain number of the polymer at 2.3- and 6-fold, respectively. The major ADP-ribosylated proteins were determined as two non-histone proteins of Mr 130 000 and 70 000. The experiment of DNA synthesis with nuclei ADP-ribosylated in the presence of spermine showed a 7-fold increase in [3H]dTMP incorporation into the acid-inaoluble fraction. A similar stimulation was also found with nuclei treated with other polysmines, spermidine and putrescine, in the presence of NAD. These results indicate that DNA synthesis in growing tissues containing polyamines at high levels, such as is the case with tumors and the fetus, is stimulated by polyamine-mediated ADP-ribosylation of the nuclear proteins.  相似文献   

18.
Poly(ADP-ribosylation) and apoptosis   总被引:5,自引:0,他引:5  
Poly(ADP-ribosylation) is a post-translational modification playing a relevant role in DNA damage recovery, DNA replication and viral integration. Several reports also suggest a modulation of this process during cell death by apoptosis. The aim of this review is to discuss the possible involvement of poly(ADP-ribosylation) during apoptosis, by dealing with general considerations on apoptosis, and further examining the correlation between NAD consumption and cell death, the regulation of poly(ADP-ribose) metabolism in apoptotic cells, the effect of poly(ADP-ribose) polymerase inhibition on cell death occurrence and the use of enzyme cleavage as a marker of apoptosis. Finally, the future prospects of the research in this area will be addressed.  相似文献   

19.
We investigated the effect on the Ca2+-dependent ATPase activity of ADP-ribosylation of the enzyme from the rabbit skeletal muscle sarcoplasmic reticulum. A reconstituted ADP-ribosylation system of Ca2+-dependent ATPase in which the enzyme and ADP-ribosyltransferase, both were partially purified from the vesicles, and poly L-lysine were contained, was preincubated with 1 mM NAD, and the Ca2+-dependent ATPase activity was assayed. The NAD-dependent suppression of the enzyme activity depended on both the concentration of NAD and preincubation-time for the ADP-ribosylation, and was reversed by adding 20 mM arginine during the preincubation. These results taken together with the findings that Ca2+-dependent ATPase is a major acceptor protein for the modification in rabbit skeletal muscle sarcoplasmic reticulum [Hara et al. (1987) Biochem. Biophys. Res. Commun. 144; 856-862] suggest that Ca2+-transport in the sarcoplasmic reticulum may be regulated through changes in the rate of ADP-ribosylation of Ca2+-dependent ATPase.  相似文献   

20.
Cell cycle variations in ADP-ribosylation of nuclear scaffold proteins were determined. Nuclei of synchronized cells were isolated and labeled with [32P]NAD before nuclear scaffolds were obtained by digestion of DNA with DNase I and extraction of proteins with 2M NaCl. Autoradiograms revealed the three groups of "lamins" and a species identified as poly (ADP-ribose) polymerase to be the primary ADP-ribosylated proteins. The patterns of modification of nuclear scaffold proteins displayed similar features through the cell cycle. Radioactivity in the lamins increased from 20% in early-S phase to 40% in G1 phase of the next cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号