首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This brief resume summarizes the evidence which shows that melatonin is a significant free radical scavenger and antioxidant at both physiological and pharmacological concentrations in vivo. Surgical removal of the pineal gland, a procedure which lowers endogenous melatonin levels in the blood, exaggerates molecular damage due to free radicals during an oxidative challenge. Likewise, providing supplemental melatonin during periods of massive free radical production greatly lowers the resulting tissue damage and dysfunction. In the current review, these findings are considered in terms of neurodegenerative diseases, cancer, ischemia/reperfusion injury and aging. Besides being a highly effective direct free radical scavenger and indirect antioxidant, melatonin has several features that make it of clinical interest. Thus, melatonin is readily absorbed when it is administered via any route, it crosses all morphophysiological barriers, e.g., blood-brain barrier and placenta, with ease, it seems to enter all parts of every cell where it prevents oxidative damage, it preserves mitochondrial function, and it has low toxicity. While blood melatonin levels are normally low, tissue levels of the indoleamine can be considerably higher and at some sites, e.g., in bone marrow cells and bile, melatonin concentrations exceed those in the blood by several orders of magnitude. What constitutes a physiological level of melatonin must be redefined in terms of the bodily fluid, tissue and subcellular compartment being examined.  相似文献   

2.
Free radical tissue damage: protective role of antioxidant nutrients   总被引:26,自引:0,他引:26  
Highly reactive molecules called free radicals can cause tissue damage by reacting with polyunsaturated fatty acids in cellular membranes, nucleotides in DNA, and critical sulfhydryl bonds in proteins. Free radicals can originate endogenously from normal metabolic reactions or exogenously as components of tobacco smoke and air pollutants and indirectly through the metabolism of certain solvents, drugs, and pesticides as well as through exposure to radiation. There is some evidence that free radical damage contributes to the etiology of many chronic health problems such as emphysema, cardiovascular and inflammatory diseases, cataracts, and cancer. Defenses against free radical damage include tocopherol (vitamin E), ascorbic acid (vitamin C), beta-carotene, glutathione, uric acid, bilirubin, and several metalloenzymes including glutathione peroxidase (selenium), catalase (iron), and superoxide dismutase (copper, zinc, manganese) and proteins such as ceruloplasmin (copper). The extent of tissue damage is the result of the balance between the free radicals generated and the antioxidant protective defense system. Several dietary micronutrients contribute greatly to the protective system. Based on the growing interest in free radical biology and the lack of effective therapies for many of the chronic diseases, the usefulness of essential, safe nutrients in protecting against the adverse effects of oxidative injury warrants further study.  相似文献   

3.
Ethanol-Induced Cell Death by Lipid Peroxidation in PC12 Cells   总被引:8,自引:0,他引:8  
Free radical generation is hypothesized to be the cause of alcohol-induced tissue injury. Using fluorescent cis-parinaric acid and TBARS, lipid peroxidation was shown to be increased in the presence of trace amounts of free ferrous ion in PC12 cells. This increase in lipid peroxidation was enhanced by ethanol in a dose dependent manner and also correlated with loss of cell viability, as measured by increased release of lactate dehydrogenase (LDH). Resveratrol, a potent antioxidant, had a protective effect against lipid peroxidation and cell death. These findings strongly suggest that ethanol-induced tissue injury and cell death is a free radical mediated process, and may be important in alcohol-related premature aging and other degenerative diseases.  相似文献   

4.
Reactive Oxygen Species and the Central Nervous System   总被引:76,自引:0,他引:76  
Radicals are species containing one or more unpaired electrons, such as nitric oxide (NO.). The oxygen radical superoxide (O2.-) and the nonradical hydrogen peroxide (H2O2) are produced during normal metabolism and perform several useful functions. Excessive production of O2.- and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxyl radical (.OH) and other oxidants in the presence of "catalytic" iron or copper ions. An important form of antioxidant defense is the storage and transport of iron and copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e.g., by ischemia or trauma, can cause increased metal ion availability and accelerate free radical reactions. This may be especially important in the brain because areas of this organ are rich in iron and CSF cannot bind released iron ions. Oxidative stress on nervous tissue can produce damage by several interacting mechanisms, including increases in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminum and in damage to the substantia nigra in patients with Parkinson's disease are reviewed. Finally, the nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be used in the design of antioxidants for therapeutic use.  相似文献   

5.
This brief review summarizes some of the biological effects of light exposure at an inappropriate time (during the normal dark period) and the potential negative physiological consequences of this light exposure. Two major systems are significantly influenced by light at night. Thus, the circadian system and melatonin synthesis are altered when light is extended into the normal dark period or when the dark period is interrupted by light. This summary reviews the potential sequelae of chronic inappropriate light exposure and the suppression of endogenous melatonin levels. Given that melatonin is a free radical scavenger and antioxidant, conditions that involve free radical damage may be aggravated by light suppression of melatonin levels. The conditions of particular interest for this review are excessive DNA damage (which potentially leads to cancer), cellular destruction in neurodegenerative diseases and aging itself. Further research should be conducted to more accurately define the potential negative impact of light at abnormal times on animal and human pathophysiology.  相似文献   

6.
One of the reasons of rheumatoid arthritis (RA) development is widely recognized the relation of free radical reactions in tissue injuries. The aim of this study was to evaluate the location where in vivo free radical reactions was enhanced in adjuvant arthritis (AA) model rats using in vivo electron spin resonance (ESR)/nitroxyl spin probe technique. The signal decay after intravenous injection of spin probe was enhanced in AA than that in control and suppressed by the pre-treatment of dexamethasone (DXT). Interestingly, the decay in joint cavity occurred prior to paw swelling of AA and suppressed by a simultaneous injection of free radical scavengers, indicating that the enhancement of free radical reactions in joint cavity of AA rats. This technique would be useful tool to determine the location of the enhanced free radical reactions and evaluate the activity of antioxidant medicine with non-invasive real-time measurement.  相似文献   

7.
Role of oxygen free radicals in carcinogenesis and brain ischemia   总被引:39,自引:0,他引:39  
R A Floyd 《FASEB journal》1990,4(9):2587-2597
Even though oxygen is necessary for aerobic life, it can also participate in potentially toxic reactions involving oxygen free radicals and transition metals such as Fe that damage membranes, proteins, and nucleic acids. Oxygen free radical reactions and oxidative damage are in most cases held in check by antioxidant defense mechanisms, but where an excessive amount of oxygen free radicals are produced or defense mechanisms are impaired, oxidative damage may occur and this appears to be important in contributing to several pathological conditions including aging, carcinogenesis, and stroke. Several newer methods, such as in vivo spin-trapping, have become available to monitor oxygen free radical flux and quantitate oxidative damage. Using a combination of these newer methods collectively focused on one model, recent results show that oxidative damage plays a key role in brain injury that occurs in stroke. Subtle changes, such as oxidative damage-induced loss of glutamine synthetase activity, may be a key event in stroke-induced brain injury. Oxygen free radicals may play a key role in carcinogenesis by mediating formation of base adducts, such as 8-hydroxyguanine, which can now be quantitated to very low levels. Evidence is presented that a new class of free radical blocking agents, nitrone spin-traps, may help not only to clarify if free radical events are involved, but may help prevent the development of injury in certain pathological conditions.  相似文献   

8.
Oxidative stress may contribute to many pathophysiologic changes that occur after traumatic brain injury. In the current study, contemporary methods of detecting oxidative stress were used in a rodent model of traumatic brain injury. The level of the stable product derived from peroxidation of arachidonyl residues in phospholipids, 8-epi-prostaglandin F(2alpha), was increased at 6 and 24 h after traumatic brain injury. Furthermore, relative amounts of fluorescent end products of lipid peroxidation in brain extracts were increased at 6 and 24 h after trauma compared with sham-operated controls. The total antioxidant reserves of brain homogenates and water-soluble antioxidant reserves as well as tissue concentrations of ascorbate, GSH, and protein sulfhydryls were reduced after traumatic brain injury. A selective inhibitor of cyclooxygenase-2, SC 58125, prevented depletion of ascorbate and thiols, the two major water-soluble antioxidants in traumatized brain. Electron paramagnetic resonance (EPR) spectroscopy of rat cortex homogenates failed to detect any radical adducts with a spin trap, 5,5-dimethyl-1-pyrroline N:-oxide, but did detect ascorbate radical signals. The ascorbate radical EPR signals increased in brain homogenates derived from traumatized brain samples compared with sham-operated controls. These results along with detailed model experiments in vitro indicate that ascorbate is a major antioxidant in brain and that the EPR assay of ascorbate radicals may be used to monitor production of free radicals in brain tissue after traumatic brain injury.  相似文献   

9.
Antioxidant depletion is believed to be a mechanism involved in the pathophysiology of several upper gastrointestinal disorders, and H, K-ATPase inhibitors can alter free radical production by neutrophils. We hypothesized that the H, K-ATPase inhibitor esomeprazole magnesium would decrease gut free radical production with a concomitant increase in gut total antioxidant capacity. A/J mice (n = 10/group) received either vehicle (control) or one of three concentrations of esomeprazole magnesium in vehicle by once-daily gavage for 10 days. Using tissue extracts from stomach and colon, total antioxidant capacity, lipid peroxide levels, and constitutive Cu/Zn-superoxide dismutase were measured using validated assays. There was a dose-related increase in total antioxidant capacity (analysis of variance, P < 0.001) in stomach, but there was no change in the colon. In the assessment of free radical production, there was a trend toward decreased lipid peroxide levels in stomach from mice receiving esomeprazole. In stomach, Cu/Zn-superoxide dismutase activity was increased (ANOVA: p=.03) in mice receiving esomeprazole. In conclusion, gastric total antioxidant capacity and Cu/Zn-superoxide dismutase activity are increased by esomeprazole, and these changes may result in part from decreased free radical production. The present results support the notion that the pharmacological effects of this agent on upper intestinal tissue are more complex than previously thought, and appear to involve both enzymatic and nonenzymatic tissue antioxidants.  相似文献   

10.
One of the reasons of rheumatoid arthritis (RA) development is widely recognized the relation of free radical reactions in tissue injuries. The aim of this study was to evaluate the location where in vivo free radical reactions was enhanced in adjuvant arthritis (AA) model rats using in vivo electron spin resonance (ESR)/nitroxyl spin probe technique. The signal decay after intravenous injection of spin probe was enhanced in AA than that in control and suppressed by the pre-treatment of dexamethasone (DXT). Interestingly, the decay in joint cavity occurred prior to paw swelling of AA and suppressed by a simultaneous injection of free radical scavengers, indicating that the enhancement of free radical reactions in joint cavity of AA rats. This technique would be useful tool to determine the location of the enhanced free radical reactions and evaluate the activity of antioxidant medicine with non-invasive real-time measurement.  相似文献   

11.
The role of oxygen free radicals in ischemia and reperfusion injury of skeletal muscle has not been well defined, partly because of the relative resistance of this tissue to normothermic ischemia. Under normal conditions small quantities of oxygen free radicals are produced but they are quenched by intracellular free radical scavenging enzymes (superoxide dismutase, catalase and glutathione peroxidase) or alpha-tocopherol. The increase in malondialdehyde suggests increased lipid peroxidation initiated by free radical reactions. Lipid peroxidation is potentially a very damaging process to the organized structure and function of membranes. The results of recent studies indicate that: a) oxygen free-radicals mediates, at least in part, the increased microvascular permeability produced by reoxygenation, b) free radical scavengers can reduce skeletal muscle necrosis occurring after prolonged ischemia. Additional evidence support the hypothesis of the interrelationship between ischemic tissue and inflammatory cells. So capillary plugging by granulocytes and oxygen free radical formation may contribute to the ischemic injury.  相似文献   

12.
Endogenously produced metabolites of ground state oxygen are highly reactive and destructive to intracellular and extracellular molecules. The resulting damage, referred to as oxidative stress, leads to molecular and cellular dysfunction. The destruction of essential macromolecules by oxygen-based reactants is the basis of some diseases and is believed to be involved in the processes of aging. Free radical scavengers and antioxidants neutralize and/or metabolically remove reactive species from cells before they carry out their destructive activities. Melatonin is a highly ubiquitous direct free radical scavenger and indirect antioxidant. This brief report summarizes the interactions of melatonin with reactive species and identifies the resulting products. The paper also defines the melatonin antioxidant cascade wherein not only melatonin but at least one of the products, i.e., N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, formed as a result of melatonin scavenging hydrogen peroxide is also a potent scavenger. The review summarizes the data which shows that melatonin is not only a pharmacologically useful free radical scavenger but that it functions in this capacity at physiological concentrations as well. Finally, this report identifies high oxidative stress situations in humans where melatonin has proven effective in reducing the severity of the disease state. In the last decade there have been hundreds of publications documenting melatonin's protective actions against a vast array of conditions, e.g., ischemia/reperfusion injury, toxin exposure, lipopolysaccharide exposure, etc., where free radical damage is a component of the condition.  相似文献   

13.
Antioxidant strategies in the treatment of stroke   总被引:15,自引:0,他引:15  
Excessive production of free radicals is known to lead to cell injury in a variety of diseases, such as cerebral ischemia. In this review, we describe some of the numerous studies that have examined this oxidative stress and the efficiency of antioxidant strategies in focal cerebral ischemia. Besides using genetically modified mice, these strategies can be divided into three groups: (1) inhibition of free radical production, (2) scavenging of free radicals, and (3) increase of free radical degradation by using agents mimicking the enzymatic activity of endogenous antioxidants. Finally, the clinical trials that have tested or are currently testing the efficiency of antioxidants in patients suffering from stroke are reviewed. The results presented here lead us to consider that antioxidants are very promising drugs for the treatment of ischemic stroke.  相似文献   

14.
Production of oxygen free radicals is a natural consequence of aerobic metabolism and they are constantly generated in vivo by chemical reactions and metabolic processes. Antioxidant defence systems scavenge and minimise the formation of oxygen-radical-derived biochemical products, however, these defences are not completely effective even under normal physiological conditions. In pathologic situations, oxygen free radicals can be generated in excess of a cell's antioxidant capacity resulting in severe damage to cellular constituents including proteins, DNA and lipids. The inherent biochemical and physiological charateristics of the brain, including high lipid concentrations and energy requirements, make it particularly susceptible to free radical mediated insult. Increasing evidence indicates that many neurological disorders may have components of free radical and oxidative stress induce injury.  相似文献   

15.
Free radicals in aging   总被引:4,自引:0,他引:4  
Summary Aging is the progressive accumulation of changes with time that are responsible for the ever-increasing likelihood of disease and death. These irreversible changes are attributed to the aging process. This process is now the major cause of death in the developed countries. This fact is obscured by the protean nature of the contributions of this process to the events which terminate life.The aging process may be due to free radical reations. This theory is supported by: 1) studies on the origin and evolution of life; 2) the numerous studies of the effect of ionizing radiation on living systems; 3) life span experiments in which the diet was modified so as to alter endogenous free radical reaction levels; 4) the plausible explanations it provides for aging phenomena; and 5) the growing number of studies which implicate free radical reactions in the pathogenesis of specific diseases.The relationship between aging and diseases involving free radical reactions seems to be a direct one. Modulation of the normal distribution of deleterious free radical reaction-induced changes throughout the body by genetic and environmental differences between individuals results in patterns of change, in some sufficiently different from the normal aging pattern to be recognized as disease. The growing number of free radical diseases includes the two major causes of death, cancer and atherosclerosis.It is reasonable to expect on the basis of present data that a judicious selection of diets and antioxidant supplements will increase the healthy, active life span by 5–10 or more years.  相似文献   

16.
Antioxidant potential of ferulic acid.   总被引:41,自引:0,他引:41  
Ferulic acid is a ubiquitous plant constituent that arises from the metabolism of phenylalanine and tyrosine. It occurs primarily in seeds and leaves both in its free form and covalently linked to lignin and other biopolymers. Due to its phenolic nucleus and an extended side chain conjugation, it readily forms a resonance stabilized phenoxy radical which accounts for its potent antioxidant potential. UV absorption by ferulic acid catalyzes stable phenoxy radical formation and thereby potentiates its ability to terminate free radical chain reactions. By virtue of effectively scavenging deleterious radicals and suppressing radiation-induced oxidative reactions, ferulic acid may serve an important antioxidant function in preserving physiological integrity of cells exposed to both air and impinging UV radiation. Similar photoprotection is afforded to skin by ferulic acid dissolved in cosmetic lotions. Its addition to foods inhibits lipid peroxidation and subsequent oxidative spoilage. By the same mechanism ferulic acid may protect against various inflammatory diseases. A number of other industrial applications are based on the antioxidant potential of ferulic acid.  相似文献   

17.
以流感病毒A/FM1/1/47(H1N1)鼠适应株,鼻腔内接种感染小鼠为模型,探讨了病毒感染过程中,自由基的产生以及在致病过程中的作用.结果表明,感染病毒的小鼠肺组织中氧自由基水平和黄嘌呤氧化酶活性显著升高,并与肺组织损伤和死亡率之间呈正相关.提示,氧自由基参与了病毒感染小鼠的致病过程,是造成组织损伤的重要因素.  相似文献   

18.
Oxidative stress and experimental carcinogenesis   总被引:6,自引:0,他引:6  
  相似文献   

19.
自由基与细胞凋亡   总被引:59,自引:1,他引:59  
细胞凋亡是指细胞在生理和病理情况下的一种死亡模式,广泛涉及到肿瘤、衰老和退行性病变等一系列疾病.最近有实验表明自由基与细胞凋亡有密切的关系.凋亡细胞内活性氧自由基(ROS)生成增加,同时消除ROS的能力下降.大多数凋亡障碍的细胞表现出ROS分子大量减少,若调节细胞内ROS含量,死亡率能随之改变;离子辐射能通过经自由基引起细胞的凋亡,培养细胞在无血清或撤除生长因子后发生的死亡也大多与细胞内自由基代谢酶如过氧化氢酶等的活性变化有关.提示自由基是参与调节细胞凋亡的重要因素之一.  相似文献   

20.
Oxidants and human disease: some new concepts   总被引:47,自引:0,他引:47  
B Halliwell 《FASEB journal》1987,1(5):358-364
Oxidant species such as superoxide radical (O.2-), hydrogen peroxide (H2O2), hydroxyl radical (HO.), and lipid peroxides (LOOH) are becoming increasingly implicated in human disease. However, the question of whether such oxidants are a major cause of tissue injury in human disease or are merely produced during such injury has been difficult to answer because of inadequate experimental techniques, and possibly because of an overemphasis on lipid peroxidation as a mechanism of oxidant injury. Recent developments in methodology, in our understanding of the primary mechanism of oxidant toxicity to cells, and in concepts of antioxidant protection are reviewed. Good evidence now exists for some role of oxidant damage to tissues in the pathology of several human diseases, including rheumatoid arthritis, reperfusion injury, immune injury to lung and kidney, and cerebral trauma or ischemia. These have led to promising suggestions for new therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号