首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The chromosomal locations of four genes which code for small, acid-soluble spore proteins (SASP) in Bacillus subtilis have been determined. Although these four genes code for extremely homologous small, acid-soluble spore proteins (greater than 65% sequence identity), the genes are not clustered but are located at 70 degrees (adjacent to glyB [sspB gene]), 115 degrees (between metC and pyr cluster [sspD gene]), 180 degrees (between metB and kauA [sspC gene]), and 260 degrees (between ilvC and aroG [sspA gene]) on the B. subtilis genetic map.  相似文献   

2.
Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores.  相似文献   

3.
4.
Four genes (ssp genes) coding for small, acid-soluble spore proteins of Bacillus megaterium and the gene for the protease that cleaves them during germination were cloned in the integratable plasmid pJH101. Each plasmid was integrated into the B. megaterium chromosome by a Campbell-type mechanism, allowing mapping of all five genes. The gene for the small, acid-soluble spore protein-specific protease (gpr) mapped near rib, and the sspA gene mapped between argA and hisA. The three other genes of the spp gene family (sspB, -D, and -F) all mapped near metC/D, with the order: sspF-sspD-metC/D-hemA-argO-sspB. While neither gpr nor sspF has been mapped in B. subtilis, the positions of the sspA, -B, and -D loci are similar in B. megaterium and B. subtilis, suggesting that the members of this multigene family have not recently undergone significant movement on the chromosome. It appears that more gene rearrangement has occurred in the flanking genes than has occurred in the ssp family of genes producing the small, acid-soluble spore proteins.  相似文献   

5.
6.
7.
Salmonella typhimurium secreted proteins (Ssp) were previously implicated in epithelial cell invasion. Here we describe four genes ( sspB , sspC , sspD , and sspA ), located between spaT and prgH , which encode proteins of 63, 42, 36, and 87 kDa, respectively. These Ssp are homologous to Shigella flexneri secreted proteins lpaB, lpaC, lpaD and lpaA. A non-invasive mutant with a transposon insertion in sspC lacks Ssp of 87,42 and 36 kDa. Complementation analyses show that sspC and sspD encode the 42 and the 36 kDa Ssp, while the 87 kDa Ssp is encoded by sspA . sspC and sspD , but not sspA are required for invasion. Amino-terminal sequencing shows that SspC and SspA are secreted without amino-terminal processing. We further demonstrate that Ssp secretion requires proteins encoded by prgHIJK , homologous to the Shigella lpa secretion system, since SspA is abundantly secreted by wild-type bacteria but is completely retained within the cellular fraction of a prgHIJK mutant. A precipitate containing abundant SspC and three other major Ssp of 63,59 and 22 kDa was isolated from culture supernatants of wild-type bacteria. These data indicate that major secreted invasion determinants of S. typhimurium are structurally and functionally homolgous to S. flexneri lpa proteins.  相似文献   

8.
We constructed in-frame translational fusions of the Escherichia coli lacZ gene with four genes (sspA, sspB, sspD, and sspE) which code for small, acid-soluble spore proteins of Bacillus subtilis, and integrated these fusions into the chromosomes of various B. subtilis strains. With single copies of the fusions in wild-type B. subtilis, beta-galactosidase was synthesized only during sporulation, with the amounts accumulated being sspB much greater than sspE greater than or equal to sspA greater than or equal to sspD. Greater than 97% of the beta-galactosidase was found in the developing forespore, and the great majority was incorporated into mature spores. Less than 2% of the maximum amount of beta-galactosidase was made when these fusions were introduced into B. subtilis strains blocked in stages 0 and II of sporulation, as well as in some stage III mutants. Other stage III mutants, as well as stage IV and V mutants, had no effect on beta-galactosidase synthesis. Increasing the copy number of the sspA-, sspD-, or sspE-lacZ fusions (up to 17-fold for sspE-lacZ) in wild-type B. subtilis resulted in a parallel increase in the amount of beta-galactosidase accumulated (again only in sporulation and with greater than 95% in the developing forespore), with no significant effect on wild-type small, acid-soluble spore protein production. Similarly, the absence of one or more wild-type ssp genes or the presence of multiple copies of wild-type ssp genes had no effect on the expression of the lacZ fusions tested. These data indicate that these ssp-lacZ fusions escape the autoregulation seen for the intact sspA and sspB genes. Strikingly, the kinetics of beta-galactosidase synthesis were identical for all four ssp-lacZ fusions and paralleled those of glucose dehydrogenase synthesis. Similarly, all asporogenous mutants tested had identical effects on both glucose dehydrogenase and ssp-lacZ fusion expression.  相似文献   

9.
The Bacillus subtilis gene (sspE) which codes for small acid-soluble spore protein gamma (SASP-gamma) was cloned, and its chromosomal location (65 degrees, linked to glpD) and nucleotide sequence were determined. The amino acid sequence of SASP-gamma is similar to that of SASP-B of Bacillus megaterium, but these sequences are not as highly conserved across species as are those of other SASPs. The SASP-gamma gene is transcribed only in sporulation in parallel with other SASP genes and gives a single mRNA that is approximately 340 nucleotides long. The results of hybridization of an sspE gene probe to Southern blots of B. subtilis DNA suggested that there is only a single gene coding for the SASP-gamma type of protein in B. subtilis. This was confirmed by introducing a deletion mutation into the cloned sspE gene and transferring the deletion into the B. subtilis chromosome, with concomitant loss of the wild-type gene. This sspE deletion strain sporulated well, but lacked the SASP-gamma type of protein.  相似文献   

10.
11.
A segment of DNA from Bacillus amyloliquefaciens, which complemented a mutant sporulation gene, spoIID68, in Bacillus subtilis, was cloned into a derivative of the temperate bacteriophage phi 105. The segment of DNA included an entire structural gene and complemented the mutation spoIID298, in addition to spoIID68, in B. subtilis. The nucleotide sequence of the gene from B. amyloliquefaciens was determined and compared with that of the B. subtilis gene; 74% homology was found in the coding region. Amino acid primary sequences derived from the nucleotide sequences of the two genes were also compared. The gene from B. amyloliquefaciens coded for a protein of 344 amino acid residues, one more than the protein coded by the corresponding gene from B. subtilis. Comparison of the primary amino acid sequences of the two genes showed that 78% of the residues were completely conserved and 8% were semi-conserved. Variation, however, was not random, i.e. some segments were much more highly conserved than others. Both proteins had a hydrophobic region at the N-terminus.  相似文献   

12.
B Beall  M Lowe    J Lutkenhaus 《Journal of bacteriology》1988,170(10):4855-4864
The Bacillus subtilis homolog of the Escherichia coli ftsZ gene was isolated by screening a B. subtilis genomic library with anti-E. coli FtsZ antiserum. DNA sequence analysis of a 4-kilobase region revealed three open reading frames. One of these coded for a protein that was about 50% homologous to the E. coli FtsZ protein. The open reading frame just upstream of ftsZ coded for a protein that was 34% homologous to the E. coli FtsA protein. The open reading frames flanking these two B. subtilis genes showed no relationship to those found in E. coli. Expression of the B. subtilis ftsZ and ftsA genes in E. coli was lethal, since neither of these genes could be cloned on plasmid vectors unless promoter sequences were first removed. Cloning the B. subtilis ftsZ gene under the control of the lac promoter resulted in an IPTGs phenotype that could be suppressed by overproduction of E. coli FtsZ. These genes mapped at 135 degrees on the B. subtilis genetic map near previously identified cell division mutations.  相似文献   

13.
A 1.8 kb HindIII DNA fragment containing the secY gene of alkalophilic Bacillus sp. C125 has been cloned into plasmid pUC119 using the B. subtilis secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained one complete ORF and parts of two other ORFs. The similarity of these ORFs to the sequences of the B. subtilis proteins indicated that they were the genes for ribosomal protein L15-SecY-adenylate kinase, in that order. The gene product of the alkalophilic Bacillus sp. C125 secY homologue was composed of 431 amino acids and its M(r) value has been calculated to be 47,100. The distribution of hydrophobic amino acids in the gene product suggested that the protein was a membrane integrated protein with ten transmembrane segments. The total amino acid sequence of alkalophilic Bacillus sp. C125 secY homologue showed 69.7% homology with that of B. subtilis secY. Regions of remarkably high homology (78% identity) were present in transmembrane regions, and cytoplasmic domains (73% identity) with less homologous regions present in extracellular domains (43% identity).  相似文献   

14.
15.
Glutamine synthetase gene of Bacillus subtilis   总被引:22,自引:0,他引:22  
The glutamine synthetase gene (glnA) of Bacillus subtilis was purified from a library of B. subtilis DNA cloned in phage lambda. By mapping the locations of previously identified mutations in the glnA locus it was possible to correlate the genetic and physical maps. Mutations known to affect expression of the glnA gene and other genes were mapped within the coding region for glutamine synthetase, as determined by measuring the sizes of truncated, immunologically cross-reacting polypeptides coded for by various sub-cloned regions of the glnA gene. When the entire B. subtilis glnA gene was present on a plasmid it was capable of directing synthesis in Escherichia coli of B. subtilis glutamine synthetase as judged by enzymatic activity, antigenicity, and ability to allow growth of a glutamine auxotroph. By use of the cloned B. subtilis glnA gene as a hybridization probe, it was shown that the known variability of glutamine synthetase specific activity during growth in various nitrogen sources is fully accounted for by changes in glnA mRNA levels.  相似文献   

16.
DNA damage-inducible (din) genes in Bacillus subtilis are coordinately regulated and together compose a global regulatory network that has been termed the SOS-like or SOB regulon. To elucidate the mechanisms of SOB regulation, operator/promoter regions from three din loci (dinA, dinB, and dinC) of B. subtilis were cloned. Operon fusions constructed with these cloned din promoter regions rendered reporter genes damage inducible in B. subtilis. Induction of all three din promoters was dependent upon a functional RecA protein. Analysis of these fusions has localized sequences required for damage-inducible expression of the dinA, dinB, and dinC promoters to within 120-, 462-, and 139-bp regions, respectively. Comparison of the nucleotide sequences of these three din promoters with the recA promoter, as well as with the promoters of other loci associated with DNA repair in B. subtilis, has identified the consensus sequence GAAC-N4-GTTC as a putative SOB operator site.  相似文献   

17.
H Smith  S Bron  J Van Ee    G Venema 《Journal of bacteriology》1987,169(7):3321-3328
To study the diversity and efficiency of signal peptides for secreted proteins in gram-positive bacteria, two plasmid vectors were constructed which were used to probe for export signal-coding regions in Bacillus subtilis. The vectors contained genes coding for extracellular proteins (the alpha-amylase gene from Bacillus licheniformis and the beta-lactamase gene from Escherichia coli) which lacked a functional signal sequence. By shotgun cloning of restriction fragments from B. subtilis chromosomal DNA, a great variety of different export-coding regions were selected. These regions were functional both in B. subtilis and in E. coli. In a number of cases where protein export had been restored, intracellular precursor proteins of increased size could be detected, which upon translocation across the cellular membrane were processed to mature products. The high frequency with which export signal-coding regions were obtained suggests that, in addition to natural signal sequences, many randomly cloned sequences can function as export signal.  相似文献   

18.
Nucleotide sequence of the Bacillus subtilis trpE and trpD genes   总被引:17,自引:0,他引:17  
L Band  H Shimotsu  D J Henner 《Gene》1984,27(1):55-65
Several overlapping portions of the tryptophan (trp) operon of Bacillus subtilis have been cloned into plasmid pBR322. The nucleotide sequence of the region comprising the trpE and trpD genes and a portion of the trpC gene has been determined. When the deduced amino acid sequences of these genes are compared with their counterparts in Escherichia coli, several regions of striking homology are seen. The probable initiation codons for the trpE, D and C genes are each preceded by a recognizable Shine-Dalgarno sequence. The coding sequences for the trpE and trpD genes and for the trpD and trpC genes overlap slightly, leaving no intercistronic regions between the genes.  相似文献   

19.
D Nilsson  B Hove-Jensen 《Gene》1987,53(2-3):247-255
The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting in a DNA fragment of approx. 1.8 kb complementing the E. coli prs mutation. Minicell experiments revealed that this DNA fragment coded for a polypeptide, shown to be the PRPP synthetase subunit, with an Mr of approx. 40,000. B. subtilis strains harbouring the prs gene in a multicopy plasmid contained up to nine-fold increased PRPP synthetase activity. The prs gene was cloned in an integration vector and the resulting hybrid plasmid inserted into the B. subtilis chromosome by homologous recombination. The integration site was mapped by transduction and the gene order established as purA-guaA-prs-cysA.  相似文献   

20.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号