首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Benzo[a]pyrene (B[a]P) is a widespread environmental carcinogen that must be activated by cellular metabolism to a diol epoxide form (BPDE) before it reacts with DNA. It has recently been shown that BPDE preferentially modifies the guanine in methylated 5'-CpG-3' sequences in the human p53 gene, providing one explanation for why these sites are mutational hot spots. Using purified duplex oligonucleotides containing identical methylated and unmethylated CpG sequences, we show here that BPDE preferentially modified the guanine in hemimethylated or fully methylated CpG sequences, producing between 3- and 8-fold more modification at this site. Analysis of this reaction using shorter duplex oligonucleotides indicated that it was the level of the (+)-trans isomer that was specifically increased. To determine if there were conformational differences between the methylated and unmethylated B[a]P-modified DNA sequences that may be responsible for this enhanced reactivity, a native polyacrylamide gel electrophoresis analysis was carried out using DNA containing isomerically pure B[a]P-DNA adducts. These experiments showed that each adduct resulted in an altered gel mobility in duplex DNA but that only the presence of a (+)-trans isomer and a methylated C 5' to the adduct resulted in a significant gel mobility shift compared with the unmethylated case.  相似文献   

2.
Tretyakova N  Matter B  Jones R  Shallop A 《Biochemistry》2002,41(30):9535-9544
The mutagenicity of a prominent tobacco carcinogen, benzo[a]pyrene (B[a]P), is believed to result from chemical reactions between its diol epoxide metabolite, (+)-anti-7r,8t-dihydroxy-c9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), and DNA, producing promutagenic lesions, e.g., (+)-trans-anti-7R,8S,9S-trihydroxy-10S-(N(2)-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (N(2)-BPDE-dG). Previous studies used the DNA repair enzyme UvrABC endonuclease in combination with ligation-mediated PCR (LMPCR) to demonstrate an increased reactivity of BPDE toward guanine nucleobases within codons 157, 248, and 273 of the p53 tumor suppressor gene (Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. Science 274, 430-432). These sites are also "hot spots" for mutations observed in lung tumors of smokers, suggesting an involvement of B[a]P in the initiation of lung cancer. However, the LMPCR approach relies on the ability of the repair enzyme to excise BPDE-induced lesions, and thus the slowly repaired lesions may escape detection. Furthermore, BPDE-DNA adduct structure and stereochemistry cannot be determined. In the present work, we performed a direct quantitative analysis of N(2)-BPDE-dG originating from specific guanine nucleobases within p53- and K-ras-derived DNA sequences by using a stable isotope labeling-mass spectrometry approach recently developed in our laboratory. (15)N-labeled dG was placed at defined positions within DNA sequences derived from the K-ras proto-oncogene and p53 tumor suppressor gene, the two genes most frequently mutated in smoking-induced lung cancer. (15)N-labeled DNA was annealed to the complementary strands, followed by BPDE treatment and liquid chromatography-electrospray ionization tandem mass spectrometry analysis (HPLC-ESI-MS/MS) of N(2)-BPDE-dG lesions. The extent of adduct formation at (15)N-labeled guanine was determined directly from the HPLC-ESI-MS/MS peak area ratios of (15)N-N(2)-BPDE-dG and N(2)-BPDE-dG. BPDE-induced guanine adducts were produced nonrandomly along K-ras and p53 gene-derived DNA sequences, with over 5-fold differences in adduct formation depending on sequence context. N(2)-BPDE-dG yield was enhanced by the presence of 5-Me substituent at the cytosine base-paired with the target guanine nucleobase, an endogenous DNA modification characteristic for CpG dinucleotides within the p53 gene. In the K-ras-derived DNA sequence, the majority of N(2)-BPDE-dG adducts originated from the first position of the codon 12 (GGT), consistent with the large number of G --> T transversions observed at this nucleotide in smoking-induced lung cancer. On the contrary, the pattern of N(2)-BPDE-dG formation within the p53 exon 5 sequences did not correlate with the mutational spectrum in lung cancer, suggesting that factors other than N(2)-BPDE-dG formation are responsible for these mutations. The stable isotope labeling HPLC-ESI-MS/MS approach described in this work is universally applicable to studies of modifications to isolated DNA by other carcinogens and alkylating drugs.  相似文献   

3.
Several recently discovered human DNA polymerases are associated with translesion synthesis past DNA adducts. These include human DNA polymerase kappa (pol kappa), a homologue of Escherichia coli pol IV, which enhances the frequency of spontaneous mutation. Using a truncated form of pol kappa (pol kappa Delta C), translesion synthesis past dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene) adducts was explored. Site-specifically-modified oligodeoxynucleotides containing a single stereoisomeric dG-N(2)-BPDE lesion were used as DNA templates for primer extension reactions catalyzed by pol kappa Delta C. Primer extension was retarded one base prior to the dG-N(2)-BPDE lesion; when incubated for longer times or with higher concentration of enzyme, full primer extension was observed. Quantitative analysis of fully extended products showed preferential incorporation of dCMP, the correct base, opposite all four stereoisomeric dG-N(2)-BPDE lesions. (+)-trans-dG-N(2)-BPDE, a major BPDE-DNA adduct, promoted small amounts of dTMP, dAMP, and dGMP misincorporation opposite the lesion (total 2.7% of the starting primers) and deletions (1.1%). Although (+)-cis-dG-N(2)-BPDE was most effective in blocking translesion synthesis, its miscoding properties were similar to other dG-N(2)-BPDE isomers. Steady-state kinetic data indicate that dCMP is efficiently inserted opposite all dG-N(2)-BPDE adducts and extended past these lesions. The relative frequency of translesion synthesis (F(ins) x F(ext)) of dC.dG-N(2)-BPDE pairs was 2-6 orders of magnitude higher than that of other mismatched pairs. Pol kappa may play an important role in translesion synthesis by incorporating preferentially the correct base opposite dG-N(2)-BPDE. Its relatively low contribution to mutagenicity suggests that other newly discovered DNA polymerase(s) may be involved in mutagenic events attributed to dG-N(2)-BPDE adducts in human cells.  相似文献   

4.
The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.  相似文献   

5.
Endogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5'-CCCGGCACCC GC[(15)N(3),(13)C(1)-G]TCCGCG-3', + strand) were prepared containing [(15)N(3), (13)C(1)]-guanine opposite unsubstituted cytosine, (Me)C, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2'-deoxynucleosides, N(2)-BPDE-dG adducts formed at the [(15)N(3), (13)C(1)]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N(2)-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N(2) position of guanine.  相似文献   

6.
The unwinding of supercoiled phi X174 RFI DNA induced by the tumorigenic (+) and non-tumorigenic (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) has been investigated by agarose slab-gel and ethidium titration tube gel electrophoresis. The differences in adduct conformations were verified by flow linear dichroism techniques. Both enantiomers cause a reversible unwinding by the formation of noncovalent intercalative complexes. The effects of covalently bound BPDE residues on the electrophoretic mobilities of the RF I DNA form in agarose gels were investigated in detail in the range of binding ratios rb approximately 0.0-0.06 (covalently bound BPDE residues/nucleotide). In this range of rb values, there is a striking difference in the mobilities of (+)-BPDE- and (-)-BPDE-adducted phi X174 DNA in agarose slab-gels, the covalently bound (+)-BPDE residues causing a significantly greater retardation than (-)-BPDE residues. Increasing the level of covalent adducts beyond rb approximately 0.06 in the case of the (+)-BPDE enantiomer, leads to further unwinding and a minimum in the mobilities (corresponding to comigration of the nicked form and the covalently closed relaxed modified form) at rb 0.10 +/- 0.01; at still higher rb values, rewinding of the modified DNA in the opposite sense is observed. From the minimum in the mobility, a mean unwinding angle (per BPDE residue) of theta = 12 +/- 1.5 degrees is determined, which is in good agreement the value of theta = 11 +/- 1.8 degrees obtained by the tube gel titration method. Using this latter method, values of theta = 6.8 +/- 1.7 degrees for (-)-BPDE-phi X174 adducts are observed. It is concluded that agarose slab gel techniques are not suitable for determining unwinding angles for (-)-BPDE-modified phi X174 DNA because the alterations in the tertiary structures for rb < 0.06 are too small to cause sufficiently large changes in the electrophoretic mobilities. The major trans (+)-BPDE-N2-guanosine covalent adduct is situated at external binding sites and the mechanisms of unwinding are therefore different from those relevant to noncovalent intercalative BPDE-DNA complexes or to classical intercalating drug molecules; a flexible hinge joint and a widening of the minor groove at the site of the lesion may account for the observed unwinding effects. The more heterogeneous (-)-BPDE-nucleoside adducts (involving cis and trans N2-guanosine, and adenosine adducts) are less effective in causing unwinding of supercoiled DNA for reasons which remain to be elucidated.  相似文献   

7.
Previous reports showed that methylated CpG sites are primary targets of bulky lesions induced by UV radiation, benzo[a]pyrene (B[a]P), or other environmental genotoxic agents. This study was performed to determine whether the repair of DNA damage formed preferentially at CpG dinucleotides is sensitive to 5-methylcytosine substitutions. Reactivation assays using UV- or B[a]P diol epoxide-damaged shuttle vectors established that human nucleotide excision repair enzymes are able to process fully methylated target DNA molecules. Repair reactions in human cell extracts suggested that 5-methylcytosines modulate local repair efficiency in a seemingly unpredictable manner. In fact, excision of the predominant (+)-trans-anti-B[a]P-dG adduct situated in a mutational hot spot sequence (codon 273 of the p53 gene) was stimulated by CpG methylation. Interestingly, excision activity was increased by a single 5-methylcytosine residue flanking the adduct in the damaged strand, but the same stimulatory effect was also induced by a single 5-methylcytosine residue located opposite the adduct in the undamaged strand. No such stimulation was observed when the (+)-trans-anti-B[a]P-dG lesion was placed in a different site containing a sequence of contiguous guanines, and strong inhibition was detected when a representative of the rare (+)-cis-anti-B[a]P-dG isomer was tested in the same assay. These results raise the possibility that 5-methylcytosines in CpG dinucleotides modulate not only the distribution of bulky DNA lesions but, at least in some cases, also the kinetics of subsequent excision repair reactions. This study confirms that the efficiency of bulky lesion repair is determined by the configuration of base pairs at damaged sites.  相似文献   

8.
Site-specifically modified oligodeoxynucleotides were used to explore the influence of neighboring base sequence context on the mutagenic potential of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-AF) in mammalian cells. Oligodeoxynucleotides ((5)(')TCCTCCTNXNCTCTC, where X is dG-AAF, dG-AF, or dG and N is C, A, G, or T) with different bases flanking the lesion were incorporated into a single-strand shuttle plasmid vector and used to establish the mutational frequency and specificity of dG-AAF and dG-AF adducts in simian kidney (COS-7) cells. Vectors containing dG-AAF promote preferential incorporation of dCMP at the site of the lesion; misincorporation of dAMP and dTMP also was observed. Mutational frequencies range from 11 to 23%. High mutational frequencies (18-23%) were observed when G or T was positioned 5' to dG-AAF and a lower frequency (11%) when C was 5' to the lesion. dCMP was predominantly incorporated opposite the dG-AF adduct when C, A, or T was 5' to the lesion; dAMP and dTMP were misincorporated at a frequency of 2-4%. With G 5' to the lesion, the overall mutational frequency for dG-AF ranged between 11 and 70%; the highest value occurred when C was the 3' flanking base, and the predominant mutation event was G --> T transversion (59%). We conclude from these experiments that dG-AAF and dG-AF promote G --> T transversions and G --> A transitions in mammalian cells. The mutational frequency and specificity of dG-AF vary significantly, depending on the nature of the bases flanking the lesion.  相似文献   

9.
Mutational hot spots in the human p53 gene are well established in tumors in the human population and are frequently negative prognosticators of the clinical outcome. We previously developed a mouse model of skin cancer with mutations in the xeroderma pigmentosum group C gene (Xpc). UVB radiation-induced skin cancer is significantly enhanced in these mice when they also carry a mutation in one copy of the Trp53 gene (Xpc-/-Trp53+/-). Skin tumors in these mice often contain inactivating mutations in the remaining Trp53 allele and we have previously reported a novel mutational hot spot at a non-dipyrimidine site (ACG) in codon 122 of the Trp53 gene in the tumors. Here we show that this mutation is not a hot spot in Xpa or Csa mutant mice. Furthermore, the mutation in codon T122 can be identified in mouse skin DNA from (Xpc-/-Trp53+/-) mice as early as 2 weeks after exposure to UVB radiation, well before histological evidence of dysplastic or neoplastic changes. Since this mutational hot spot is not at a dipyrimidine site and is apparently Xpc-specific, we suggest that some form of non-dipyrimidine base damage is normally repaired in a manner that is distinct from conventional nucleotide excision repair, but that requires XPC protein.  相似文献   

10.
We have determined the mutational specificity of S9-activated benzo[a]pyrene (B[a]P) at the endogenous aprt locus in a hemizygous Chinese hamster ovary cell line. The aprt gene of recovered mutants was amplified using the polymerase chain reaction (PCR) and directly sequenced. This spectrum was then compared to mutations recovered following treatment with the B[a]P metabolite, benzo[a]pyrene diol-epoxide (BPDE). No significant difference between the two spectra in the types of mutations produced, or their distribution was observed. This observation supports the hypothesis that BPDE is the reactive metabolite of B[a]P, responsible for the significant biological effects caused by this ubiquitous polycyclic aromatic hydrocarbon. The major mutation recovered was the G:C-->T:A transversion, and mutations were primarily localized within runs of guanines. We also confirmed our previous finding that mutation by B[a]P is non-random, targeting events in runs of guanines flanked by adenine residues. This same target hotspot region is found in codon 61 of the human c-Ha-ras1 proto-oncogene. This may help explain the selective activation of this codon by BPDE.  相似文献   

11.
R L Rill  G A Marsch 《Biochemistry》1990,29(25):6050-6058
The sequence preferences of formation of piperidine-labile adducts of guanine by individual (+)- and (-)-isomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene [anti-(+)- and anti-(-)-BPDE] were examined by techniques analogous to chemical DNA sequencing. Data were obtained on over 1200 bases with anti-(-)-BPDE and 1000 bases with anti-(+)-BPDE. Guanines on average yielded more labile adducts than other bases, and the reactivities of guanines with both anti-(+)- and anti-(-)-BPDE isomers were found to be distinctly nonrandom with respect to DNA sequence. The most and least reactive guanines, defined in terms of the upper and lower 10 percentiles of reactivity, differed on average by a factor of 17. This range of guanine reactivities was correlated with distinct sequence preferences, which differed in part for the two isomers. The strongest determinant for preferred reaction of anti-(-)-BPDE to form a labile adduct at a guanine was the presence of a 3'-flanking guanine, but a thymine 5'-flanking a guanine also generally enhanced reactivity. The triplets containing central guanines most preferred by anti-(-)-BPDE were AGG, CGG, and TG(G greater than T greater than C,A). anti-(+)-BPDE also formed labile adducts preferentially at AGG and CGG triplets, but not at TGN triplets. Significant effects of next-nearest-neighbor bases on guanine reactivities were also noted.  相似文献   

12.
L H Pearl  S Neidle 《FEBS letters》1986,209(2):269-276
A general computational procedure for the modelling of intercalated DNA-ligand complexes has been developed, and is used here to model intercalated complexes of the (+)-anti and (-)-anti enantiomers of benzo[a]pyrene diol-epoxide (BPDE) with cytosine-3',5'-guanosine double-stranded DNA sequences (dCpG). Results are presented indicating differences between the behaviours of the two enantiomers which have implications for the understanding of the stereospecificity of DNA strand breakage by benzo[a]pyrene diol-epoxides.  相似文献   

13.
The covalent binding of the tumorigenic (+) enantiomer and the nontumorigenic (-) enantiomer of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,19-tetrahydrobenzo(a)pyrene (BPDE) to double-stranded native DNA gives rise to heterogeneous adducts, especially in the case of (-)-BPDE. The covalent (+)-BPDE-DNA adducts are predominantly of the external site II type, while the (-)-BPDE-DNA adducts are predominantly of the quasi-intercalative, site I type (65%), with 35% of site II adducts. The site I adducts can be selectively photodissociated with near-ultraviolet light (quantum yields in the range 0.0003-0.005); the external site II adducts (photodissociation quantum yield 3 X 10(-5) are 10-100-times more stable. The photolability of covalent (-)-BPDE-DNA adducts accounts for the discrepancies in the linear dichroism properties of these complexes reported previously. Fluorescence quenching data, previously utilized to assess the degree of solvent exposure of the pyrenyl residues in covalent adducts, were in some cases significantly influenced by the presence of highly fluorescent tetraol dissociation products. After correcting for this effect, it is shown that the fluorescence of the external site II (+)-BPDE-DNA adducts is sensitive to acrylamide, while the fluorescence of the dominant site I (-)-BPDE-DNA adducts is not affected by this fluorescence quencher, as expected for adducts with considerable carcinogen-base stacking interactions.  相似文献   

14.
Rajesh M  Wang G  Jones R  Tretyakova N 《Biochemistry》2005,44(6):2197-2207
The p53 tumor suppressor gene is a primary target in smoking-induced lung cancer. Interestingly, p53 mutations observed in lung tumors of smokers are concentrated at guanine bases within endogenously methylated (Me)CG dinucleotides, e.g., codons 157, 158, 245, 248, and 273 ((Me)C = 5-methylcytosine). One possible mechanism for the increased mutagenesis at these sites involves targeted binding of metabolically activated tobacco carcinogens to (Me)CG sequences. In the present work, a stable isotope labeling HPLC-ESI(+)-MS/MS approach was employed to analyze the formation of guanine lesions induced by the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) within DNA duplexes representing p53 mutational "hot spots" and surrounding sequences. Synthetic DNA duplexes containing p53 codons 153-159, 243-250, and 269-275 were prepared, where (Me)C was incorporated at all physiologically methylated CG sites. In each duplex, one of the guanine bases was replaced with [1,7,NH(2)-(15)N(3)-2-(13)C]-guanine, which served as an isotope "tag" to enable specific quantification of guanine lesions originating from that position. After incubation with NNK diazohydroxides, HPLC-ESI(+)-MS/MS analysis was used to determine the yields of NNK adducts at the isotopically labeled guanine and at unlabeled guanine bases elsewhere in the sequence. We found that N7-methyl-2'-deoxyguanosine and N7-[4-oxo-4-(3-pyridyl)but-1-yl]guanine lesions were overproduced at the 3'-guanine bases within polypurine runs, while the formation of O(6)-methyl-2'-deoxyguanosine and O(6)-[4-oxo-4-(3-pyridyl)but-1-yl]-2'-deoxyguanosine adducts was specifically preferred at the 3'-guanine base of 5'-GG and 5'-GGG sequences. In contrast, the presence of 5'-neighboring (Me)C inhibited O(6)-guanine adduct formation. These results indicate that the N7- and O(6)-guanine adducts of NNK are not overproduced at the endogenously methylated CG dinucleotides within the p53 tumor suppressor gene, suggesting that factors other than NNK adduct formation are responsible for mutagenesis at these sites.  相似文献   

15.
2-Acetylaminonaphthalene (2-AAN) has been recognized as a urinary bladder carcinogen in humans. The deacetylated form, 2-aminonaphthalene (2-AN), is metabolized in vivo and reacts primarily with guanine residues in DNA, resulting in the formation of dG-N(2)-aminonaphthalene (dG-N(2)-AN) adduct. Phosphoramidite chemical procedure has recently been established in our laboratory to prepare oligodeoxynucleotides containing a single dG-N(2)-acetylaminonaphthalene (dG-N(2)-AAN) adduct. Oligodeoxynucleotides ((5')TCCTCCTNXCCTCTC, where X is dG or dG-N(2)-AAN and N is C, A, T or G) with different bases 5' flanking to the lesion were prepared and were inserted into a single-strand shuttle vectors and used to establish the mutational frequency and specificity of dG-N(2)-AAN adduct in simian kidney cells. dG-N(2)-AAN adduct promoted preferential incorporation of dCMP, the correct base, opposite the lesion. When the 5' flanking base to the lesion was C, A or T, the mutational frequency was under 2.1%. When G flanked to the lesion, the mutational frequency was slightly increased to 4.2%. Misincorporation of dAMP, dTMP, and/or dGMP varied depending on the 5' flanking base. When dG-N(2)-AAN was positioned at codon 61 of noncoding strand of human c-Ha-ras1 gene ((5')TCCTCCTXGCCTCTC, where X is dG-N(2)-AAN), the mutational frequency was 6.7%; G-->T transversions (4.7%), followed by G-->A transition (2.0%), were observed. These results demonstrated that dG-N(2)-AAN is a weak mutagenic lesion in mammalian cells. The influence of 5' flanking sequence context was observed on the mutational frequency and specificity of this adduct.  相似文献   

16.
Mutations in the TP53 tumor suppressor gene are the most common alteration in cancer, and human primary liver cancers related to previous dietary exposure to the mycotoxin aflatoxin B1 (AFB1) exhibit a specific hot spot mutation at TP53 codon 249. We have asked whether the 249 hot spot is related to a particular susceptibility to AFB1 of this TP53 region or whether it is related to a phenotype of the 249S p53 mutant protein. This was addressed by constructing a metabolically competent variant of Saccharomyces cerevisiae strain yIG397 expressing human cytochrome P450 1A2 and P450-reductase and isolating AFB1-induced mutants that failed to express the genomic ADE2 reporter gene. Molecular analysis revealed that only 8/40 mutants had a mutation in the TP53 target gene, whereas 32/40 mutants were due to a recombination event eliminating the ADE2 reporter gene. None of 19 mutations identified in the eight mutant TP53 plasmids altered codon 249, thus this codon was no hot spot if the TP53 gene was in the heterologous background yeast. The genotoxic action of AFB1 was completely different from that of the alkylating agent ethyl-methane-sulfonate, where 28/30 induced mutations were linked to the TP53 target gene.  相似文献   

17.
A latent endoribonuclease, RNase L, binds to and is activated by (2'-5')oligoadenylates ((2'-5')(A)n, n = 2-15). Binding to a labeled derivative of (2'-5')(A)n, [32P](2'-5')(A)3pCp, is detected as a protein-ligand complex observed following nondenaturing polyacrylamide gel electrophoresis. One major binding complex and two minor binding complexes are readily seen in cytoplasmic extracts from Ehrlich ascites tumor cells, murine tissue extracts and rabbit liver tissue extracts. At least one of the more rapidly migrating complexes appears to be a proteolytic degradation product of the larger [32P](2'-5')(A)3pCp binding protein. Cell and tissue extracts containing [32P](2'-5')(A)3pCp binding activity can be immobilized onto nitrocellulose filters and [32P](2'-5')(A)3pCp binding activity detected using a simple, rapid, economical affinity blot assay. Detection of [32P](2'-5')(A)3pCp binding proteins following electrophoresis on nondenaturing polyacrylamide gels and the affinity blot assay significantly improve and simplify the analysis of (2'-5')(A)n binding proteins.  相似文献   

18.
Zhang Y  Wu X  Guo D  Rechkoblit O  Wang Z 《DNA Repair》2002,1(7):559-569
In cells, the major benzo[a]pyrene DNA adduct is the highly mutagenic (+)-trans-anti-BPDE-N(2)-dG. In eukaryotes, little is known about lesion bypass of this DNA adduct during replication. Here, we show that purified human Polkappa can effectively bypass a template (+)-trans-anti-BPDE-N(2)-dG adduct in an error-free manner. Kinetic parameters indicate that Polkappa bypass of the (-)-trans-anti-BPDE-N(2)-dG adduct was approximately 41-fold more efficient compared to the (+)-trans-anti-BPDE-N(2)-dG adduct. Furthermore, we have found another activity of human Polkappa in response to the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts: extension synthesis from mispaired primer 3' ends opposite the lesion. In contrast, the two adducts strongly blocked DNA synthesis by the purified human Polbeta and the purified catalytic subunits of yeast Polalpha, Poldelta, and Pol epsilon right before the lesion. Extension by human Polkappa from the primer 3' G opposite the (+)- and (-)-trans-anti-BPDE-N(2)-dG adducts was mediated by a -1 deletion mechanism, probably resulting from re-aligning the primer G to pair with the next template C by Polkappa prior to DNA synthesis. Thus, sequence contexts 5' to the lesion strongly affect the fidelity and mechanism of the Polkappa-catalyzed extension synthesis. These results support a dual-function model of human Polkappa in bypass of BPDE DNA adducts: it may function both as an error-free bypass polymerase alone and an extension synthesis polymerase in combination with another polymerase.  相似文献   

19.
Abstract

A theoretical model is proposed for the covalent binding of (+) 7 β,8α-dihydroxy-9α, 10α- epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene denoted by BPDE I(+), to N2 on guanine. The DNA must kink a minimum of 39° to allow proper hybrid configurations about the C10 and N2 atoms involved in bond formation and to allow stacking of the pyrene moiety with the non-bonded adjacent base pair. Conservative (same sugar puckers and glycosidic angles as in B-DNA) and non-conservative (alternating sugar puckers as in intercalation sites) conformations are found and they are proposed structures in pathways connecting B-DNA, an intercalation site, and a kink site in the formation of a covalently intercalative bound adduct of BPDE I(+) to N2 on guanine. Stereographic projections are presented for (3′) and (5′) binding in the DNA. Experimental data for bending of DNA by BPDE, orientation of BPDE in DNA and unwinding of superhelical DNA is explained. The structure of a covalent intercalative complex is predicted to result from the reaction. Also, an anti ? syn transition of guanine results in a structure which allows the DNA to resume its overall B-form. The only change is that guanine has been rotated by 200° about its glycosidic bond so that the BPDE I(+) is bound in the major groove. The latter step may allow the DNA to be stored with an adduct which may produce an error in the genetic code.  相似文献   

20.
We identified a minimal domain of human p53 required for the transactivation of a p53 response element in Saccharomyces cerevisiae. This domain contains the central region of p53 sufficient for specific DNA binding, which colocalizes with the region responsible for binding simian virus 40 large T antigen, 53BP1, and 53BP2. Thirty amino acid positions, including natural mutational hot spots (R175, R213, R248, R249, and R273), in the minimal DNA-binding domain were mutated by alanine substitution. Alanine substitutions at positions R213, R248, R249, D281, R282, R283, E286, and N288 affected transactivation but allowed binding to at least one of the three interacting proteins; these amino acids may be involved in amino acid-base pair contacts. Surprisingly, alanine substitution at the mutational hot spot R175 did not affect DNA binding, transactivation, or T-antigen binding, although it nearly eliminated binding to 53BP1 and 53BP2. Mutation of H168 significantly affected only T-antigen binding, and mutation of E285 affected only 53BP1 binding. Thus, we implicate specific residues of p53 in different DNA and protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号