首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
An alternative hypothesis for the origin of Amazonian bird diversity   总被引:2,自引:0,他引:2  
Aim To determine the origin of the high diversity of birds and other animals and plants in Amazonia. Previous hypotheses are: palaeogeography hypothesis, river hypothesis, river-refuge hypothesis, refuge hypothesis, disturbance-vicariance hypothesis, gradient hypothesis, pest-pressure hypothesis, intermediate disturbance hypothesis, riverine disturbance hypothesis, models of fine-scale habitat heterogeneity, lake hypothesis, and museum hypothesis. Methods At present there is agreement between areas of high species diversity and sites located over 100 m. As these sites would have been islands during a sea-level rise of this value, it was important to determine the probable distribution of these islands in Amazonia during a marine transgression. For that purpose, I traced the 100 m contour line from topographic maps. Results Two broad marine transgressions would have been produced from the Atlantic Ocean via the Amazon and Orinoco rivers. Two very large islands would have been formed to the north of the Amazon River, and other islands and archipelagos would have been formed along the coastal lowlands of Guiana, and at the periphery of the Amazon basin. The area located between the Solimoýes and Negro rivers and in the lower Branco would have been completely covered by the sea. Main conclusions A substantial part of the high diversity of forest and nonforest birds in lowland Amazonia can be hypothetysed to have originated during sea-level rises of about 100 m in the Quaternary and late Tertiary. These transgressions would have fragmented the Amazonian lowland into a large number of true islands and archipelagos, thus favouring active allopatric speciation. Values appreciably higher than 100 m above the present sea-level during previous periods of the Tertiary would have produced segregation of the biota earlier than the Tertiary–Quaternary boundary. Sea-level rises and vegetational changes (by aridity or cooling) would thus have driven the speciation pump, and local disturbances and other processes, would maintain the diversity.  相似文献   

2.
Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs. We show the first evidence that inundation of the Mississippi Embayment contributed to speciation. We reject the hypotheses that Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River contributed to speciation in this clade. We find that by reducing gene flow, rivers have the potential to cause divergence of lineages. Finally, we demonstrate that populations in areas affected by Quaternary glaciation and aridification have reduced levels of genetic variation compared to those from more equable regions, suggesting recent colonization.  相似文献   

3.
Biotic interchange between geographic regions can promote rapid diversification. However, what are the important factors that determine the rate of diversification (e.g., trait‐dependent diversification) vary between study systems. The evolutionary history of Dynastes beetles, which can be found in both North and South Americas and exhibit two different altitudinal preferences (highland and lowland) is tested for the effects of biotic interchange between continents and different ecological preferences on the rate of species diversification. Additionally, the hypotheses of geological time‐dependent and lineage specific diversification rates are also tested. Results from this study indicate that in Dynastes beetles a pre‐landbridge dispersal hypothesis from South to North America is preferred and that the speciation rates estimated using BAMM are similar between lineages of different geographic origins and different altitudinal preferences (i.e., diversification rate is not trait‐dependent). On the other hand, my result from marcoevolutionary cohort analysis based on BAMM outputs suggests that the rate of speciation in Dynastes beetles is, instead of trait‐dependent (geographic and ecological), lineage specific. Furthermore, a steadily increasing speciation rate can be found in Pliocene and Pleistocene, which implies that geological and climatic events, i.e., colonizing North America, habitat reformation in the Amazonia, and forest contraction in Pleistocene, may have together shaped the current biodiversity pattern in Dynastes beetles.  相似文献   

4.
The Guiana Shield (GS) is one of the most pristine regions of Amazonia and biologically one of the richest areas on Earth. How and when this massive diversity arose remains the subject of considerable debate. The prevailing hypothesis of Quaternary glacial refugia suggests that a part of the eastern GS, among other areas in Amazonia, served as stable forested refugia during periods of aridity. However, the recently proposed disturbance-vicariance hypothesis proposes that fluctuations in temperature on orbital timescales, with some associated aridity, have driven Neotropical diversification. The expectations of the temporal and spatial organization of biodiversity differ between these two hypotheses. Here, we compare the genetic structure of 12 leaf-litter inhabiting frog species from the GS lowlands using a combination of mitochondrial and nuclear sequences in an integrative analytical approach that includes phylogenetic reconstructions, molecular dating, and Geographic Information System methods. This comparative and integrated approach overcomes the well-known limitations of phylogeographic inference based on single species and single loci. All of the focal species exhibit distinct phylogeographic patterns highlighting taxon-specific historical distributions, ecological tolerances to climatic disturbance, and dispersal abilities. Nevertheless, all but one species exhibit a history of fragmentation/isolation within the eastern GS during the Quaternary with spatial and temporal concordance among species. The signature of isolation in northern French Guiana (FG) during the early Pleistocene is particularly clear. Approximate Bayesian Computation supports the synchrony of the divergence between northern FG and other GS lineages. Substructure observed throughout the GS suggests further Quaternary fragmentation and a role for rivers. Our findings support fragmentation of moist tropical forest in the eastern GS during this period when the refuge hypothesis would have the region serving as a contiguous wet-forest refuge.  相似文献   

5.
Refuge theory postulates that repeated oscillation of dry and moist climatic periods during the Pleistocene caused an alternating fragmentation and coalescence of areas of lowland tropical rainforest vegetation, leading to genetic differentiation and speciation in isolated populations of rainforest organisms and hence accounting for much of the high diversity now apparent in these habitats. The theory, which became widely accepted during the 1970s, is still based largely on inferences from modern species distribution patterns and on selected palaeoclimatic and geomorphic data. However, much of this evidence has multiple interpretations; indeed, modern population genetic theory argues against many of the tenets of refuge theory. Moreover, there is no palynological evidence against which refuge theory might be tested. Although large-scale dynamic processes have undoubtedly played many parts in promoting diversity in tropical rainforest, refuge theory must be seriously questioned on many counts.  相似文献   

6.
Synopsis Similarities between the freshwater fish faunas of 52 west African rivers have been investigated and three main zoogeographic regions recognized. The Sudanian region includes all rivers from Senegal to the Omo, as well as coastal basins from Ivory Coast to the Cross and the Wouri. The Upper Guinean region comprises the coastal basins from Guinea to Liberia and the Lower Guinean one, the coastal rivers of Cameroon and Gaboon. The Sudanian region can be sub-divided into a Sudanian region sensu stricto, including the Sahelo-Sudanese rivers, and the Eburneo-Ghanean region corresponding to coastal basins from the Cess (or Nipoué, Ivory Coast) to the Pra (Ghana). These delimitations give an highly significant within region faunal homogeneity, even if the effect of geographical proximity between rivers is removed. 21 to 71% of the fish species in each region are endemics. The present patterns of distribution are the result of past climatic and geological events affecting west Africa and, given this framework, the role of alternating wet and dry periods during the early Quarternary is emphasized as well as the importance of mountains as dispersal barriers. Role of recent river connections and links via lagoon is emphasized in explaining river faunal similarities within biogeographical regions.  相似文献   

7.
Among those few hypotheses of Amazonian diversification amenable to falsification by phylogenetic and population genetics methods, three can be singled out because of their general application to vertebrates: the riverine barrier, the refuge, and the Miocene marine incursion hypotheses. I used phylogenetic and population genetics methods to reconstruct the diversification history of the upland (terra-firme) forest superspecies Xiphorhynchus spixii/elegans (Aves: Dendrocolaptidae) in Amazonia, and to evaluate predictions of the riverine barrier, refuge, and Miocene marine incursion hypotheses. Phylogeographic and population genetics analyses of the X. spixiilelegans superspecies indicated that the main prediction of the riverine barrier hypothesis (that sister lineages occur across major rivers) hold only for populations separated by "clear-water" rivers located on the Brazilian shield, in central and eastern Amazonia; in contrast, "white-water" rivers located in western Amazonia did not represent areas of primary divergence for populations of this superspecies. The main prediction derived from the refuge hypothesis (that populations of the X. spixii/elegans superspecies would show signs of past population bottlenecks and recent demographic expansions) was supported only for populations found in western Amazonia, where paleoecological data have failed to support past rainforest fragmentation and expansion of open vegetation types; conversely, populations from the eastern and central parts of Amazonia, where paleoecological data are consistent with an historical interplay between rainforest and open vegetation types, did not show population genetics attributes expected under the refuge hypothesis. Phylogeographic and population genetics data were consistent with the prediction made by the Miocene marine incursion hypothesis that populations of the X. spixii/elegans superspecies found on the Brazilian shield were older than populations from other parts of Amazonia. In contrast, the phylogeny obtained for lineages of this superspecies falsified the predicted monophyly of Brazilian shield populations, as postulated by the Miocene marine incursion hypothesis. In general, important predictions of both riverine barrier and Miocene marine incursion hypotheses were supported, indicating that they are not mutually exclusive; in fact, the data presented herein suggest that an interaction among geology, sea level changes, and hydrography created opportunities for cladogenesis in the X. spixii/elegans superspecies at different temporal and geographical scales.  相似文献   

8.
Diversification of South American species endemic to open habitats has been attributed to both Tertiary events and Pleistocene climatic fluctuations. Nonetheless, phylogeographical studies of taxa in these regions are few, precluding generalizations about the timing and processes leading to differentiation and speciation. We inferred population structure of Hypsiboas albopunctatus, a frog widely distributed in the Brazilian Cerrado. Three geographically distinct lineages were recovered in our phylogeny. The Chapada dos Guimarães (CG) clade was the first to diverge from other populations and contains multiple haplotypes from a single population in western Cerrado, probably representing a cryptic species. The southeast clade (SE) includes populations along the southeastern limit of the range within the historical distribution of the Brazilian Atlantic forest. Finally, the Central Cerrado (CC) group includes haplotypes from the interior of Brazil that are paraphyletic relative to the SE clade. Analyses of historical demography indicate significant population expansion in the CC and SE populations, likely associated with colonization of newly formed open habitats. The divergence of populations in the CG clade occurred in the late Miocene, concordant with the uplift of the central Brazilian plateau. Divergence of the SE clade from the CC occurred during the mid‐Pleistocene. Thus, both Tertiary geological events and Pleistocene climatic fluctuations promoted divergences among lineages. Our study reveals a complex history of diversification in the Cerrado, a morphoclimatic domain highly threatened because of anthropogenic habitat alteration. We identified surprisingly deep divergences in a widely distributed frog, indicating that the Cerrado is not a barrier‐free habitat and that its diversity is likely underestimated.  相似文献   

9.
Historical climate changes have had a major effect on the distribution and evolution of plant species in the neotropics. What is more controversial is whether relatively recent Pleistocene climatic changes have driven speciation, or whether neotropical species diversity is more ancient. This question is addressed using evolutionary rate analysis of sequence data of nuclear ribosomal internal transcribed spacers in diverse taxa occupying neotropical seasonally dry forests, including Ruprechtia (Polygonaceae), robinioid legumes (Fabaceae), Chaetocalyx and Nissolia (Fabaceae), and Loxopterygium (Anacardiaceae). Species diversifications in these taxa occurred both during and before the Pleistocene in Central America, but were primarily pre-Pleistocene in South America. This indicates plausibility both for models that predict tropical species diversity to be recent and that invoke a role for Pleistocene climatic change, and those that consider it ancient and implicate geological factors such as the Andean orogeny and the closure of the Panama Isthmus. Cladistic vicariance analysis was attempted to identify common factors underlying evolution in these groups. In spite of the similar Mid-Miocene to Pliocene ages of the study taxa, and their high degree of endemism in the different fragments of South American dry forests, the analysis yielded equivocal, non-robust patterns of area relationships.  相似文献   

10.
Peripatric speciation and the importance of founder effects have long been controversial, and multilocus sequence data and coalescent methods now allow hypotheses of peripatric speciation to be tested in a rigorous manner. Using a multilocus phylogeographical data set for two species of salamanders (genus Hydromantes) from the Sierra Nevada of California, hypotheses of recent divergence by peripatric speciation and older, allopatric divergence were tested. Phylogeographical analysis revealed two divergent lineages within Hydromantes platycephalus, which were estimated to have diverged in the Pliocene. By contrast, a low‐elevation species, Hydromantes brunus, diverged from within the northern lineage of H. platycephalus much more recently (mid‐Pleistocene), during a time of major climatic change in the Sierra Nevada. Multilocus species tree estimation and coalescent estimates of divergence time, migration rate, and growth rate reject a scenario of ancient speciation of H. brunus with subsequent gene flow and introgression from H. platycephalus, instead supporting a more recent divergence with population expansion. Although the small, peripheral distribution of H. brunus suggests the possibility of peripatric speciation, the estimated founding population size of the species was too large to have allowed founder effects to be important in its divergence. These results provide evidence for both recent speciation, most likely tied to the climatic changes of the Pleistocene, and older lineage divergence, possibly due to geological events, and add to evidence that Pleistocene glacial cycles were an important driver of diversification in the Sierra Nevada.  相似文献   

11.
Climatic and geological processes associated with glaciation cycles during the Pleistocene have been implicated in influencing patterns of genetic variation and promoting speciation of temperate flora and fauna. However, determining the factors promoting divergence and speciation is often difficult in many groups because of our limited understanding of potential vicariant barriers and connectivity between populations. Pleistocene glacial cycles are thought to have significantly influenced the distribution and diversity of subterranean invertebrates; however, impacts on subterranean aquatic vertebrates are less clear. We employed several hypothesis‐driven approaches to assess the impacts of Pleistocene climatic and geological changes on the Northern Cavefish, Amblyopsis spelaea, whose current distribution occurs near the southern extent of glacial advances in North America. Our results show that the modern Ohio River has been a significant barrier to dispersal and is correlated with patterns of genetic divergence. We infer that populations were isolated in two refugia located north and south of the Ohio River during the most recent two glacial cycles with evidence of demographic expansion in the northern isolate. Finally, we conclude that climatic and geological processes have resulted in the formation of cryptic forms and advocate recognition of two distinct phylogenetic lineages currently recognized as A. spelaea.  相似文献   

12.
The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene--or both--have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area.  相似文献   

13.
Variation in the spatial structure of communities in terms of species composition (beta diversity) is affected by different ecological processes, such as environmental filtering and dispersal limitation. Large rivers are known as barriers for species dispersal (riverine hypothesis) in tropical regions. However, when organisms are not dispersal limited by geographic barriers, other factors, such as climatic conditions and geographic distance per se, may affect species distribution. In order to investigate the relative contribution of major rivers, climate and geographic distance on Passeriformes beta diversity, we divided Amazonia into 549 grid cells (1° of latitude and longitude) and obtained data of species occurrence, climate and geographic position for each cell. Beta diversity was measured using taxonomic, phylogenetic and functional metrics of composition. The influence of climatic variables, geographic distance and rivers on these metrics was tested using regression analyses. Passerine beta diversity is characterized mainly by the change in species taxonomic identity and in phylogenetic lineages across climatic gradients and over geographic distance. However, species with similar traits are found throughout the entire Amazonia. The size of rivers was proportional to their effect on species composition. However, climate and geographic distance are relatively more important than rivers for Amazonian taxonomic and phylogenetic species composition.  相似文献   

14.
Leandra s.str. clade has around 200 species nearly restricted to eastern Brazil. Most species in this group are narrow endemics, but a few present striking disjunct distributions between eastern Brazil and Andes or Mesoamerica. Given the predominantly “montane” distribution observed in most Leandra s.str., we hypothesized that cyclical range expansions during colder Pleistocene periods, followed by local extinctions during warmer interglacial periods, could have shaped the distribution of the disjunct species in this clade. In order to gather support for this biogeographical scenario in a phylogenetic framework, the species that occur outside eastern Brazil were identified, ages of the dispersal events estimated, climatic niche models for the disjuncts were generated, and the climatic envelope of these species compared. Our results place all dispersal events from eastern Brazil to Andes or Mesoamerica during the Pleistocene. Climatic niche modeling indicates a potential range expansion during the Pleistocene colder times for the disjunct species. Although the surpassing of the “dry diagonal” could have been facilitated during glacial periods, this open corridor is an effective barrier for Leandra, given the reduced number of species that dispersed beyond an eastern Brazilian origin. Additionally, the disjunct species do not present significant differences in their climatic envelopes to the non‐disjunct species. Our results provide support to a short‐dispersion/stepping‐stone migration scenario to account for the observed disjunctions in this clade. Range expansions during Pleistocene colder periods followed by local extinctions during interglacial periods could have shaped the distribution of Leandra s.str.  相似文献   

15.
Orographic and climatic influences during the Pleistocene have had a crucial role on interspecific divergence and population demography during speciation. However, associations between demographic histories of closely related species and related climatic events, especially in north and northeast China, are still underexplored. Genetic analyses with four chloroplast DNA and two nuclear genes and species distribution modeling were used for two closely related oak species (Quercus liaotungensis and Quercus mongolica) to test if their interspecific divergence and phylogeographical histories were possibly related to the Pleistocene-era climatic events. Potential divergence of the two oak species was estimated at about 0.92–2.15 Ma. Species distribution models and genetic data showed varying phylogeographical histories and spatial population structures between the two oaks, leading to different patterns of interspecific gene flow between the chloroplast and nuclear genes. The results indicate that speciation event between the two species is recent and may have been triggered by geological and climatic fluctuations linked to the upheavals of the Qinghai-Tibetan Plateau at the Pliocene/Pleistocene boundary. The two closely related oaks possess varying population demography during the interglacial-glacial climatic oscillations of the Quaternary, probably due to the various niche adaptations among different distribution ranges across their species trajectories.  相似文献   

16.
Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of 'young' and 'old' species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.  相似文献   

17.
The possibility thatHomo crossed the Gibraltar Strait during the Plio-Pleistocene is currently debated. The finds of human remains and lithic artefacts in different Plio-Pleistocene beds of the Orce region (SE Iberia Peninsula) are evidence thatHomo was in this region at least before 1.4 mya. But, which was the route used byHomo to reach SE Spain during the early Pleistocene? In this contribution we collect different kinds of data (paleontological, geological, paleogeographical, paleoclimatic and oceanographic) which strengthen the hypothesis thatHomo crossed the Gibraltar Strait for the first time during earliest Pleistocene. Important falls in sea level related to cold periods together with the presence in the Iberian Peninsula of African mammal species at different times in the geological history and also the presence of at least one European species in North Africa during the Late Pliocene indicate a faunal exchange between Africa and Europe. The geography of the strait, the marine currents and their possible evolution are questions treated in this contribution. Some fossils and current examples of mammal fauna migrations across the sea are also analysed.  相似文献   

18.
It has been suggested in the literature that primates of the genus Cacajao have been restricted to flooded-forest habitats of western Amazonia since their split from the Chiropotes line in the Tertiary. It has been proposed further that the differentiation of the two species of this genus, Cacajao melanocephalus and Cacajao calvus, occurred during the Pleistocene period as a result of the fragmentation of the Amazon forest and the isolation of populations in these forest fragments or refuges. However, recent evidence has shown that at least C. melanocephalus is not dependent on flooded-forest habitats, and molecular analysis of mitochondrial DNA shows that the two species had already differentiated during the Pliocene, thus Pleistocene glaciations do not explain the speciation in Cacajao. Considering that C. melanocephalus and its closest relative, Chiropotes, inhabit terra firme forests, it is suggested that preference for flooded-forest habitats may be an apomorphy in C. calvus.  相似文献   

19.
Multivariate analyses of 393 butterfly species over 85 geographical areas (R- and Q-data matrices) in Europe and North Africa have produced a consistent pattern of faunal structures (units and regions). Prominent features to emerge are the latitudinal zonation of geographical units and the division of the Mediterranean into western and eastern components; southwards in Europe, endemicity increases whereas faunal structures decrease in spatial dimensions. Central Europe–from the Urals to the British Isles–forms a single large faunal structure (extent unit and region). A model has been constructed to account for Pleistocene evolutionary changes and endemism in European butterflies and for the east-west taxonomic divisions in the extent faunal structure which dominates central Europe. Periodic Pleistocene climatic changes have resulted in cycles of population extinction, isolation, evolution and migration, but the nature and timing of events has depended on the environmental tolerances of species belonging to different faunal units. During Pleistocene glaciations, southern species have been relatively static and more isolated and have evolved independently. By comparison, northern species have been more mobile and have migrated over large distances. Contact and hybrid zones among cosmopolitan species in northern Europe are probably of some antiquity. They result from persistent survival and isolation of refuge populations in the west and east Mediterranean during glacial phases; dispersal from these refuges leads to their regeneration during each interglacial.  相似文献   

20.
Many understory birds and other groups form genetically differentiated subspecies or closely related species on opposite sides of major rivers of Amazonia, but are proposed to come into geographic contact in headwater regions where narrower river widths may present less of a dispersal barrier. Whether such forms hybridize in headwater regions is generally unknown, but has important implications to our understanding of the role of rivers as drivers of speciation. We used a dataset of several thousand single nucleotide polymorphisms to show that seven taxon pairs that differentiate across a major Amazonian river come into geographic contact and hybridize in headwater regions. All taxon pairs possessed hybrids with low numbers of loci in which alleles were inherited from both parental species, suggesting they are backcrossed with parentals, and indicating gene flow between parental populations. Ongoing gene flow challenges rivers as the sole cause of in situ speciation, but is compatible with the view that the wide river courses in the heart of Amazonia may have driven interfluvial divergence during episodes of wet forest retraction away from headwater regions. Taxa as old as 4 Ma in our Amazonian dataset continue to hybridize at contact zones, suggesting reproductive isolation evolves at a slow pace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号