首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A derivative of the native-sequence tripeptide of the specific Cu(II)-transport site of human serum albumin, L-aspartyl-L-alanyl-L-histidine N-methylamide, was synthesized, and its binding to Cu(II) was examined to determine the influence of the side-chain groups on the Cu(II) binding. The equilibria involved in the Cu(II)-L-aspartyl-L-alanyl-L-histidine N-methylamide system were investigated by analytical potentiometry. Three complex species were found in the pH range 4-10. The same species were identified in both the visible and circular-dichroism spectra. The main species present in the physiological pH range is shown to have the same ligands around the square-planar Cu(II) ion as those reported for albumin and tripeptides diglycyl-L-histidine and its N-methylamide derivative. The results obtained from competition experiments showed that this tripeptide has a higher affinity towards Cu(II) than has albumin itself. The overall findings are compared with those from albumin. At neutral pH the side chains do not play any important role in the Cu(II) binding, but at low pH the beta-carboxyl group of the N-terminal aspartic residue becomes important. A possible competition site on albumin for Cu(II) at low pH is discussed.  相似文献   

2.
Bovine serum albumin inhibits binding of transferrin by hepatocytes in suspension by 60-70%. Iron uptake is inhibited by less than 20%. A Scatchard analysis of the transferrin-binding data reveals a biphasic plot in the absence of bovine serum albumin, but a monophasic plot in the presence of bovine serum albumin. Bovine serum albumin inhibits low-affinity binding of transferrin (125000 molecules/cell), but has no effect on high-affinity binding (38000 molecules/cell). In pronase-treated cells, transferrin binding is reduced by 40%, and when bovine serum albumin is added, the binding is reduced by a further 40%. Corresponding figures for iron uptake are 70 and 10%, respectively. The results are strong evidence that the major part of iron uptake by hepatocytes occurs from transferrin bound to the plasma membrane transferrin receptor.  相似文献   

3.
The N-terminal region of bovine serum albumin (Asp-Thr-His-Lys) is known to provide a specific binding site for Cu(II) ions, with the histidine residue thought to be mainly responsible for the specificity. Thiomolybdates have been found to increase the binding affinity of Cu(II) to some serum albumins. As part of a series of studies to study the interactions between Cu(II), thiomolybdates and bovine serum albumin, we have performed the syntheses and characterization of small model peptides such as His-Lys, Thr(Ac)-His-Lys and Thr-His-Lys. Proton NMR spectra have been monitored in H(2)O solution as a function of pH and added Cu(II) concentration. Reliable K(a) values for His-Lys and Thr(Ac)-His-Lys have been established. Probable binding sites of Cu(II) and the relative strengths of binding to these peptides are also discussed.  相似文献   

4.
The thermodynamics of Cu(II) and Ni(II) binding to bovine serum albumin (BSA) have been studied by isothermal titration calorimetry (ITC). The Cu(II) binding affinity of the N-terminal protein site is quantitatively higher when the single free thiol, Cys-34, is reduced (mercaptalbumin), compared to when it is oxidized or derivatized with N-ethylmaleimide. This increased affinity is due predominantly to entropic factors. At higher pH (approximately 9), when the protein is in the basic (B) form, a second Cu(II) binds with high affinity to albumin with reduced Cys-34. The Cu(II) coordination has been characterized by UV-vis absorption, CD, and EPR spectroscopy, and the spectral data are consistent with thiolate coordination to a tetragonal Cu(II), indicating this is a type 2 copper site with thiolate ligation. Nickel(II) binding to the N-terminal site of BSA is also modulated by the redox/ligation state of Cys-34, with higher Ni(II) affinity for mercaptalbumin, the predominant circulating form of the protein.  相似文献   

5.
The function of human Sco1 and Sco2 is shown to be dependent on copper ion binding. Expression of soluble domains of human Sco1 and Sco2 either in bacteria or the yeast cytoplasm resulted in the recovery of copper-containing proteins. The metallation of human Sco1, but not Sco2, when expressed in the yeast cytoplasm is dependent on the co-expression of human Cox17. Two conserved cysteines and a histidyl residue, known to be important for both copper binding and in vivo function in yeast Sco1, are also critical for in vivo function of human Sco1 and Sco2. Human and yeast Sco proteins can bind either a single Cu(I) or Cu(II) ion. The Cu(II) site yields S-Cu(II) charge transfer transitions that are not bleached by weak reductants or chelators. The Cu(I) site exhibits trigonal geometry, whereas the Cu(II) site resembles a type II Cu(II) site with a higher coordination number. To identify additional potential ligands for the Cu(II) site, a series of mutant proteins with substitutions in conserved residues in the vicinity of the Cu(I) site were examined. Mutation of several conserved carboxylates did not alter either in vivo function or the presence of the Cu(II) chromophore. In contrast, replacement of Asp238 in human or yeast Sco1 abrogated the Cu(II) visible transitions and in yeast Sco1 attenuated Cu(II), but not Cu(I), binding. Both the mutant yeast and human proteins were nonfunctional, suggesting the importance of this aspartate for normal function. Taken together, these data suggest that both Cu(I) and Cu(II) binding are critical for normal Sco function.  相似文献   

6.
J P Laussac  B Sarkar 《Biochemistry》1984,23(12):2832-2838
As a basis for understanding the role of albumin in the transport of metal ions, detailed investigations have been carried out to elucidate the structure of Ni(II)- and Cu(II)-binding site of the peptide residue corresponding to the NH2-terminal peptide fragment 1-24 of human serum albumin by 1H and 13C NMR spectroscopy. These studies have been conducted in aqueous medium at different pH values and at different ligand/metal ratios. The results show the following: (i) Diamagnetic Ni(II) complex and paramagnetic Cu(II) complex are in slow exchange NMR time scale. (ii) Titration results of Ni(II)-bound form of peptide 1-24 show the presence of a 1:1 complex in the wide pH range (6.0-11.0), and the same stoichiometry is proposed for Cu(II) as well. (iii) Analysis of the spectra suggests that both Ni(II) and Cu(II) have one specific binding site at the NH2-terminal tripeptide segment (Asp-Ala-His...) involving the Asp alpha-NH2, His N(1) imidazole, two deprotonated peptide nitrogens (Ala NH and His NH), and the Asp COO- group. (iv) Complexation of Ni(II) and Cu(II) causes conformational change near the metal-binding site of the polypeptide chain, but there is no other binding group involved besides those in the first three residues.  相似文献   

7.
Cu(II) binding to the alpha prion protein (alphaPrP) can be both intramolecular and intermolecular. X-ray absorption spectroscopy at the copper K-edge has been used to explore the site geometry under each binding mode using both insoluble polymeric Cu(II).alphaBoPrP-(24-242) (bovine PrP) complexes and soluble Cu(II) complexes of peptides containing one, two, and four copies of the octarepeat. Analysis of the extended region of the spectra using a multiple scattering approach revealed two types of sites differing in the number of His residues in the first coordination shell of Cu(II). Peptides containing one and two-octarepeat copies in sub-stoichiometric Cu(II) complexes showed the direct binding of a single His in accord with crystallographic intra-repeat geometry. Alternatively, the polymeric Cu(II).alphaBoPrP-(24-242) complex and Cu(II) in its soluble complex with a four-octarepeat peptide at half-site-occupancy showed Cu(II) directly bound to two His residues, consistent with an inter-repeat binding mode. Increasing the Cu(II) site occupancy from 0.5 to 0.75 in the peptide containing four octarepeats resulted in spectral features that are intermediate to those of the inter- and intra-repeat modes. The transition from His-Cu-His (inter-repeat) to Cu-His (intra-repeat) on increasing Cu(II) saturation offers a structural basis for the positive cooperativity of the cation binding process and explains the capacity of alphaPrP to participate in Cu(II)-mediated intermolecular interactions.  相似文献   

8.
The binding of Cu2+ to native and copper-free dopamine beta-monooxygenase has been investigated by potentiometric titrations using a Cu2+-selective electrode. Stoichiometric formation constants have been determined from regression analysis of the resulting titration curves. The results establish a stoichiometry of four high-affinity binding sites for Cu/+ (log Kf approximately 11) per enzyme tetramer, and more binding sites of lower affinity (log Kf approximately 5-7). The data for binding of the first four Cu2+ to the enzyme tetramer indicate interactions in the binding to the sites. Bovine serum albumin, metal-free carbonic anhydrase, and ovotransferrin have also been titrated with Cu2+, and the formation constants of both high-affinity binding sites and other sites have been determined. The stoichiometry of one high-affinity binding site of Cu2+ for carbonic anhydrase (log Kf approximately 10-12) and two sites for ovotransferrin (log Kf approximately 11) agree with the reported metal binding properties of these proteins. The number of high-affinity binding sites for bovine serum albumin was pH dependent.  相似文献   

9.
The binding of Cd(II) and Zn(II) to human serum albumin (HSA) and dog serum albumin (DSA) has been studied by equilibrium dialysis and 113Cd(II)-NMR techniques at physiological pH. Scatchard analysis of the equilibrium dialysis data indicate the presence of at least two classes of binding sites for Cd(II) and Zn(II). On analysis of the high-affinity class of sites, HSA is shown to bind 2.08 +/- 0.09 (log K = 5.3 +/- 0.6) and 1.07 +/- 0.12 (log K = 6.4 +/- 0.8) moles of Cd(II) and Zn(II) per mole of protein, respectively. DSA bound 2.02 +/- 0.19 (log K = 5.1 +/- 0.8), and 1.06 +/- 0.15 (log K = 6.0 +/- 0.2) moles of Cd(II) and Zn(II) per mole of protein, respectively. Competition studies indicate the presence of one high-affinity Cd(II) site on both HSA and DSA that is not affected by Zn(II) or Cu(II), and one high-affinity Zn(II) site on both HSA and DSA that is not affected by Cd(II) or Cu(II). 113Cadmium-HSA spectra display three resonances corresponding to three different sites of complexation. In site I, Cd(II) is most probably coordinated to two or three histidyl residues, site II to one histidyl residue and three oxygen ligands (carboxylate), while for the most upfield site III, four oxygens are likely to be involved in the binding of the metal ion. The 113Cd(II)-DSA spectra display only two resonances corresponding to two different sites of complexation. The environment around Cd(II) at sites I and II on DSA is similar to sites I and II, respectively, on HSA. No additional resonances are observed in any of these experiments and in particular in the low field region where sulfur coordination occurs. Overall, our results are consistent with the proposal that the physiologically important high-affinity Zn(II) and Cd(II) binding sites of albumins are located not at the Cu(II)-specific NH2-terminal site, but at internal sites, involving mostly nitrogen and oxygen ligands and no sulphur ligand.  相似文献   

10.
Cyclam‐based ligands and their complexes are known to show antitumor activity. This study was undertaken to examine the interaction of a diazacyclam‐based macrocyclic copper(II) complex with bovine serum albumin (BSA) under physiological conditions. The interactions of different metal‐based drugs with blood proteins, especially those with serum albumin, may affect the concentration and deactivation of metal drugs, and thereby influence their availability and toxicity during chemotherapy. In this vein, several spectral methods including UV–vis absorption, fluorescence and circular dichroism (CD) spectroscopy techniques were used. Spectroscopic analysis of the fluorescence quenching confirmed that the Cu(II) complex quenched BSA fluorescence intensity by a dynamic mechanism. In order to further determine the quenching mechanism, an analysis of Stern–Volmer plots at various concentrations of BSA was carried out. It was found that the KSV value increased with the BSA concentration. It was suggested that the fluorescence quenching process was a dynamic quenching rather than a static quenching mechanism. Based on Förster's theory, the average binding distance between the Cu(II) complex and BSA (r) was found to be 4.98 nm; as the binding distance was less than 8 nm, energy transfer from BSA to the Cu(II) complex had a high possibility of occurrence. Thermodynamic parameters (positive ΔH and ΔS values) and measurement of competitive fluorescence with 1‐anilinonaphthalene‐8‐sulphonic acid (1,8‐ANS) indicated that hydrophobic interaction plays a major role in the Cu(II) complex interaction with BSA. A Job's plot of the results confirmed that there was one binding site in BSA for the Cu(II) complex (1:1 stoichiometry). The site marker competitive experiment confirmed that the Cu(II) complex was located in site I (subdomain IIA) of BSA. Finally, CD data indicated that interaction of the Cu(II) complex with BSA caused a small increase in the α‐helical content. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Iron binding to transferrin and lactoferrin requires a synergistic anion, which is carbonate in vivo. The anion is thought to play a key role in iron binding and release. To understand better the iron-carbonate interaction, experiments were performed with iron(III) and copper(II) complexes of human milk lactoferrin and serum transferrin with carbon-13-labeled carbonate. Modulation frequencies were present in the Fourier transforms of two-pulse and three-pulse electron spin echo envelope modulation data for the Fe(III) and Cu(II) complexes, consistent with binding of carbonate to both metals. The metal-13C interaction was similar for the lactoferrin and transferrin complexes. Spin coupling to the nitrogen of a coordinated histidine imidazole was observed for both metals. Both the metal-nitrogen and the metal-carbon spin coupling constants were about a factor of 5 smaller for the iron complexes than for the copper complexes, which indicated substantial similarity in the metal-carbonate and metal-imidazole binding for the two metals.  相似文献   

12.
alpha-lactalbumin has at least three distinct cation binding regions: a Ca(II)-Gd(III) site, a Cu(II)-Zn(II) site and a VO2+ site as observed from electron paramagnetic resonance (EPR) studies of complexes with the bovine protein. Gadolinium, which bound to the calcium site of the protein with a subnanomolar dissociation constant, yielded EPR spectra at 9.5 GHz (X-band) that exhibited features from g = 8 to g = 2. At 35 GHz (Q-band) the central fine structure transition (Ms = 1/2----Ms = -1/2) gave a well-defined powder pattern. The zero-field splitting was large, as reflected in the second-order splitting of the central fine structure transition of about 1 kG. There was also evidence for additional, low affinity binding site(s) for Gd(III). Addition of either Zn(II) or Al(III) did not affect the amplitudes or positions of the bound Gd(III) EPR spectrum. The Cu(II)-alpha-lactalbumin complex gave a typical axially symmetric spectrum (g parallel = 2.260, g perpendicular = 2.056, A parallel = 171 G) with a partially resolved superhyperfine interaction attributable to at least one directly coordinated nitrogen ligand. Addition of Cu(II) to Gd(III)-alpha-lactalbumin gave an EPR spectrum that was a superposition of signals from the individual Gd(III)- and Cu(II)-alpha-LA spectra. The absence of any magnetic interactions in the Gd(III)-Cu(II)-alpha-lactalbumin species indicated that the two cation sites were more than 10 A apart. On the other hand, addition of Zn(II) to Cu(II)-alpha-lactalbumin gave a set of EPR lines due to free or loosely bound Cu(II), confirming that the Cu(II) was displaced by zinc.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Karr JW  Szalai VA 《Biochemistry》2008,47(17):5006-5016
Copper has been proposed to play a role in Alzheimer's disease through interactions with the amyoid-beta (Abeta) peptide. The coordination environment of bound copper as a function of Cu:Abeta stoichiometry and Abeta oligomerization state are particularly contentious. Using low-temperature electron paramagnetic resonance (EPR) spectroscopy, we spectroscopically distinguish two Cu(II) binding sites on both soluble and fibrillar Abeta (for site 1, A parallel = 168 +/- 1 G and g parallel = 2.268; for site 2, A parallel = 157 +/- 2 G and g parallel = 2.303). When fibrils that have been incubated with more than 1 equiv of Cu(II) are washed, the second Cu(II) ion is removed, indicating that it is only weakly bound to the fibrils. No change in the Cu(II) coordination environment is detected by EPR spectroscopy of Cu(II) with Abeta (1:1 ratio) collected as a function of Abeta fibrillization time, which indicates that the Cu(II) environment is independent of Abeta oligomeric state. The initial Cu(II)-Abeta complexes go on to form Cu(II)-containing Abeta fibrils. Transmission electron microscopy images of Abeta fibrils before and after Cu(II) addition are the same, showing that once incorporated, Cu(II) does not affect fibrillar structure; however, the presence of Cu(II) appears to induce fibril-fibril association. On the basis of our results, we propose a model for Cu(II) binding to Abeta during fibrillization that is independent of peptide oligomeric state.  相似文献   

14.
The binding of Cu(II) to native human, porcine, bovine and ovine ceruloplasmin (Cp) and to bovine serum albumin (bSA) has been studied at pH 7.4, 30 mM barbital buffer. The results were analyzed for the strength and the number of binding sites using Scatchard plots. Evidence for additional copper binding sites in Cp and bSA was obtained suggesting a role for copper ion in the homeostatic regulation of Cu(II) and other metal ions in the serum. In the binding studies the Cp was freed of exogenous Cu(II) by passing it over a Chelex-100 column. Two flow rates were used, 4 ml/hr and 40 ml/hr, which removed Cu(II) of different affinities. Cp passed at the slower flow rate (Cp4) only contained the prosthetic copper atoms. Cp passed at the faster flow rate (Cp40) contained one additional copper atom with a Ka approximately 10(7) M-1. Another 2-6 Cu(II) ion could be added to the Cp40 with an average affinity of about Ka approximately 10(5) M-1. The Cu(II) ions found in Cp provide two distinguishable classes: (1) the prosthetic copper atoms and (2) the exogenous copper atoms that can be removed by Chelex-100. For bSA one copper atom was bound strongly with a Ka value approaching 10(12) - 10(13) M-1 and was not removed by Chelex-100 at any flow rate. A second copper atom was found with a Ka = 5.2 x 10(6) M-1 and was removed by Chelex-100 at 4 ml/hr. Three additional copper atoms were bound with a Ka = 1.6 x 10(5) M-1; they were readily removed by Chelex-100 at 40 ml/hr but were nondialysable.  相似文献   

15.
The interaction of gossypol with bovine serum albumin, human serum albumin and n-bromosuccinimide-modified bovine serum albumin has been followed by fluorescence quenching measurements. The presence of a high affinity site (association constant K = 2.2 x 10(6) M-1) for gossypol on bovine serum albumin and human serum albumin is indicated. The stoichiometry of binding for the high affinity site was evaluated using Job's method of continuous variation, thereby suggesting the formation of 1:1 complex. Modification of the tryptophan residues on bovine serum albumin does not affect the binding of gossypol to either high or low affinity site of albumin.  相似文献   

16.
The binding equilibrium of deuteroporphyrin IX to human serum albumin and to bovine serum albumin was studied, by monitoring protein-induced changes in the porphyrin fluorescence and taking into consideration the self-aggregation of the porphyrin. To have control over the latter, the range of porphyrin concentrations was chosen to maker dimers (non-covalent) the dominant aggregate. Each protein was found to have one high-affinity site for deuteroporphyrin IX monomers, the magnitudes of the equilibrium binding constants (25 degrees C, neutral pH, phosphate-buffered saline) being 4.5 (+/- 1.5) X 10(7) M-1 and 1.7 (+/- 0.2) X 10(6) M-1 for human serum albumin and for bovine serum albumin respectively. Deuteroporphyrin IX dimers were found to bind directly to the protein, each protein binding one dimer, with high affinity. Two models are proposed for the protein-binding of porphyrin monomers and dimers in a porphyrin system having both species: a competitive model, where each protein molecule has only one binding site, which can be occupied by either a monomer or a dimer; a non-competitive model, where each protein molecule has two binding sites, one for monomers and one for dimers. On testing the fit of the data to the models, an argument can be made to favour the non-competitive model, the equilibrium binding constants of the dimers, for the non-competitive model (25 degrees C, neutral pH, phosphate-buffered saline), being: 8.0 (+/- 1.8) X 10(8) M-1 and 1.2 (+/- 0.6) X 10(7) M-1 for human serum albumin and bovine serum albumin respectively.  相似文献   

17.
Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with (15)N- and (13)C,(15)N-labeled Aβ(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.  相似文献   

18.
ESR spectra of the tight binding Cu(II) complex of bovine serum albumin (BSA) has been studied using S-band. At physiological pH, only one form of copper binding to BSA was detected from the ESR spectra. From previous X-band ESR spectra, nitrogen superhyperfine splittings were observable in the g perpendicular region; however, the resolution of the g parallel region was not sufficient to confirm the exact donor atoms of the complex. Using low-frequency ESR (2-4 GHz) at 77 K, we have resolved the nitrogen superhyperfine structure in the g parallel region. A computer simulation method has been developed for distinguishing between three and four nitrogen donor atoms. The Hyde-Froncisz theory of g and A strain broadening has been modified to use a field-swept calculation for the line shape. The observed intensity pattern and the computer simulation of such spectra positively confirm the structure of Cu(II) ion coordinated to four in-plane nitrogen atoms in frozen aqueous solutions of Cu(II)-BSA complexes at physiological pH. This is the first time that this binding site has been confirmed on the protein instead of a protein fragment or model compound. This work is another example of the usefulness of the S-band ESR technique for characterizing the metal-protein interactions when random variation in g factors cause line broadening in conventional X-band ESR spectra.  相似文献   

19.
Several bismuth compounds are currently used as antiulcer drugs, but their mechanism of action is not well established. Proteins are thought to be target sites. In this work we establish that the competitive binding of Bi(3+) to the blood serum proteins albumin and transferrin, as isolated proteins and in blood plasma, can be monitored via observation of (1)H and (13)C NMR resonances of isotopically labeled [epsilon-(13)C]Met transferrin. We show that Met(132) in the I132M recombinant N-lobe transferrin mutant is a sensitive indicator of N-lobe metal binding. Bi(3+) binds to the specific Fe(3+) sites of transferrin and the observed shifts of Met resonances suggest that Bi(3+) induces similar conformational changes in the N-lobe of transferrin in aqueous solution and plasma. Bi(3+) binding to albumin is nonspecific and Cys(34) is not a major binding site, which is surprising because Bi(3+) has a high affinity for thiolate sulfur. This illustrates that the potential target sites for metals (in this case Bi(3+)) in proteins depend not only on their presence but also on their accessibility. Bi(3+) binds to transferrin in preference to albumin both in aqueous solution and in blood plasma.  相似文献   

20.
Transient electric dichroism has been measured for a Cu(II)–bovine serum albumin (BSA)–2-(2-pyridylazo)-1-naphthol (αPAN) complex at pH 5.5–12. From the magnitude of the reduced linear dichroism and the disorientation rate of the oriented chromophore, at least three kinds of binding states of Cu(αPAN)+ complex exist. They are present predominantly at pH 5.5–10, 7.5–10, and 10–12, with the αPAN plane approximately parallel, vertical, and parallel with respect to the oriented axis of a BSA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号