首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contents of Na+, K+, water, and dry matter were measured in leaves and roots of euhalophytes Salicornia europaea L. and Climacoptera lanata (Pall.) Botsch featuring succulent and xeromorphic cell structures, respectively, as well as in saltbush Atriplex micrantha C.A. Mey, a halophyte having bladder-like salt glands on their leaves. All three species were able to accumulate Na+ in their tissues. The Na+ content in organs increased with elevation of NaCl concentration in the substrate, the concentrations of Na+ being higher in leaves than in roots. When these halophytes were grown on a NaCl-free substrate, a trend toward K+ accumulation was observed and was better pronounced in leaves than in roots. Particularly high K+ concentrations were accumulated in Salicornia leaves. There were no principal differences in the partitioning of Na+ and K+ between organs of three halophyte species representing different ecological groups. At all substrate concentrations of NaCl, the total content of Na+ and K+ in leaves was higher than in roots. This distribution pattern persisted in Atriplex possessing salt glands, as well as in euhalophytes Salicornia and Climacoptera. The physiological significance of such universal pattern of ion accumulation and distribution among organs in halophytes is related to the necessity of water absorption by roots, its transport to shoots, and maintenance of sufficient cell water content in all organs under high soil salinity.  相似文献   

2.
Responses of Atriplex spongiosa and Suaeda monoica to Salinity   总被引:14,自引:7,他引:7       下载免费PDF全文
The growth and tissue water, K+, Na+, Cl, proline and glycinebetaine contents of the shoots and roots of two Chenopodiaceae, Atriplex spongiosa and Suaeda monoica have been measured over a range of external NaCl salinities. Both species showed some fresh weight response to low salinity mainly due to increased succulence. S. monoica showed both a greater increase in succulence (at low salinities) and tolerance of high salinities than A. spongiosa. Both species had high affinities for Na+ and maintained constant but low shoot K+ contents with increasing salinity. These trends were more marked with S. monoica in which Na+ stimulated the accumulation of K+ in roots. An association between high leaf Na+ accumulation, high osmotic pressure, succulence, and a positive growth response at low salinities was noted. Proline accumulation was observed in shoot tissues with suboptimal water contents. High glycinebetaine contents were found in the shoots of both species. These correlated closely with the sap osmotic pressure and it is suggested that glycinebetaine is the major cytoplasmic osmoticum (with K+ salts) in these species at high salinities. Na+ salts may be preferentially utilized as vacuolar osmotica.  相似文献   

3.
Yi L P  Ma J  Li Y 《农业工程》2007,27(9):3565-3571
North-West China is an arid region where halophyte plants are rich. Very little is known on the rhizospheric soil of the halophytes in this arid desert region. We conducted a rhizobag experiment on the desert Solonchak soil to investigate the salt and nutrient content in the rhizospheric soil of the desert halophytes. The total salt and the concentrations of 8 major kinds of salt ions increased in the rhizosphere of both succulent halophytes and salt secreting halophytes, but this increase was insignificant for salt-resisting halophytes. Accumulation of Cl and Na+ is the most significant among the 8 major kinds of salt ions. Accumulation of Cl was more significant than that of SO42– in succulent halophytes and salt secreting halophytes. The Na+/K+, Na+/Ca2+ and Na+/Mg2+ ratios in the rhizosphere of all 7 kinds of halophytes were higher than those in the bulk soil. Total N increased significantly in the rhizosphere, but total P and total K decreased. However, the available N, P and K in the rhizosphere of the 7 kinds of halophytes except Phragmites communis Trin. behaved in such an opposite way that available N decreased but available P and available K increased. The ionic contents in the aboveground parts were higher than those in the underground parts of the 7 kinds of halophytes, in particular of both the succulent halophytes and the salt secreting halophytes. Accumulation of Cl and Na+ in the aboveground parts of the plants was the most significant among that of the 8 major kinds of salt ions.  相似文献   

4.
Salicornia europaea is a succulent euhalophyte that belongs to the Chenopodiaceae family. It is found that moderate concentration of NaCl can dramatically stimulate the growth of S. europaea plants. To elucidate the mechanism underlying the phenomenon, morphological and physiological changes of S. europaea in response to different ions, including cations (Na+, K+, Li+, Cs+) and anions (Cl, NO3 , CH3COO) were investigated, and the effects of Na+, Cl and K+ on the growth of S. europaea were also studied. Na+ was more effective than K+ and Cl in stimulating shoot succulence, cell expansion, and stomatal opening. Plants treated with Na+ (including NaCl, Na+, NaNO3) showed better plant growth, increased photosynthesis and less cell membrane damage than those untreated and treated with 200 mM of Cl and K+ (including KCl and KNO3). Both SEM-X-Ray microanalysis and flame emission results revealed that well developed S. europaea plants had a higher content of sodium but lower potassium and chlorine. It is concluded that sodium plays a more important role in the growth and development of S. europaea than potassium and chloride.  相似文献   

5.
The electrophysiology of root cells of the marine halophyte, Salicornia bigelovii Torr., has been investigated. Cellular concentrations of K+, Cl, and Na+ and resulting cell membrane potentials were determined as functions of time and exposure to dilutions of artificial seawater. Treatment of these data by the Nernst criterion suggests that Cl is actively transported into these root cells, but that active transport need not be invoked to explain the accumulation of Na+ at all salinities investigated nor for K+ at moderate to high salinities. In low environmental salinity, the cell electropotential of Salicornia root cells was found to respond to inhibitors in a fashion similar to that observed in glycophytes; in high environmental salinity, root cell membrane potential appears to be insensitive to bathing salinity and m-chlorocarbonylcyanide phenylhydrazone induces membrane hyperpolarization, in contrast to the response of glycophytes to such treatments. The fact that measured membrane potentials exceed diffusion potentials for Na+, K+, and Cl and the observation of a rapid depolarization by CO in the dark suggests an electrogenic component in Salicornia root cell membrane potentials.  相似文献   

6.
Transport of 86Rb+/K+, 22Na+, 36Cl?, and [3H]indole acetic acid (IAA) has been studied on suspension-cultured cells of the parsley, Petroselinum crispum (Mill) Nym. By compartmental analysis two intracellular compartments of K+, Na+, and Cl? have been identified and ascribed to the cytoplasm and vacuole; half-times of exchange were around 200 s and 5 h, respectively. According to the Ussing-Teorell flux equation, active transport is required for the influx into the cytoplasm at the plasmalemma (K+, Cl?) and the tonoplast (K+, Na+, Cl?). The plasmalemma permeability pattern, PK:PNa:PCl=1.00:0.24:0.38, features an increased chloride permeability compared with cells from higher plant tissues. IAA uptake showed an exponential timecourse, was half-maximal after 10 min, and a linear function of the IAA concentration from 10?9 to 10?5 M. IAA and 2,4-dichlorophenoxy acetic acid reduce the apparent influx of K+, Na+, Cl? during the initial 30 min after addition and subsequently accelerate both in- and efflux of these ions. We discuss that auxins could affect the ion fluxes in a complex way, e.g. by protonophorous activity and by control of the hypothetical proton pump.  相似文献   

7.
Four selected NaCl-tolerant cell lines of Sour orange (Citrus aurantium) were compared with the nonselected cell line in their growth and internal ion content of Na+, K+, and Cl when exposed to increasing NaCl concentrations. No difference was found among the various NaCl-tolerant cell lines in Na+ and Cl uptake, and all these cell lines took up similar or even larger amounts of Na+ and Cl than the NaCl-sensitive cell line. Exposure of cells of NaCl-sensitive and NaCl-tolerant lines to equal external concentrations of NaCl, resulted in a greater loss of K+ from the NaCl-sensitive cell line. This observation leads to the conclusion that growth and ability to retain high levels of internal K+ are correlated. Exposure of the NaCl-tolerant cell lines to salts other than NaCl resulted in even greater tolerance to Na2SO4, but rather poor tolerance to K+ introduced as either K2SO4 or KCl; the latter has a stronger inhibitory effect. The NaCl-sensitive cell line proved to be more sensitive to replacement of Na+ by K+. Analyses of internal Na+, K+, and Cl concentrations failed to identify any particular internal ion concentration which could serve as a reliable marker for salt tolerance.  相似文献   

8.
《FEBS letters》1997,400(2-3):191-195
The different murine D2-type dopamine receptors (D2L, D2S, D3L, D3S, and D4) were expressed in Xenopus laevis oocytes. The D2-type receptors were all similarly and efficiently expressed in Xenopus oocytes and were shown to bind the D2 antagonist [125I]sulpride. They were all shown to activate Cl influx upon agonist stimulation. Using the diagnostic inhibitor bumetanide, we were able to separate the Na+/K+/2Cl cotransporter component of the Cl influx from the total unidirectional Cl influx. The D3L subtype was found to operate exclusively through the bumetanide-insensitive Cl influx whereas the other D2-type receptors acted on the Na+/K+/2Cl cotransporter as well. The pertussis toxin sensitivity of the receptor-activated chloride influx via the Na+/K+/2Cl cotransporter varied between the various D2-type receptors showing that they may couple to different G proteins, and activate different second messenger systems.  相似文献   

9.
Ehrlich ascites tumor cell membrane potential (Vm) and intracellular Na+, K+ and Cl activities were measured under steady-state conditions in normal saline medium (Na+ = 154, K+ = 6, Cl = 150 mequiv./l). Membrane potential was estimated to be −23.3 ± 0.8 mV using glass microelectrodes. Intracellular ion activities were estimated with similar glass electrodes rendered ion-selective by incorporation of ion-specific ionophores. Measurements of Vm and ion-activity differences were made in the same populations of cells. Under these conditions the intracellular Na+, K+ and Cl activities are 4.6 ± 0.5; 68.3 ± 8.0; and 43.6 ± 2.1 mequiv./l, respectively. The apparent activity coefficients for Na+ and K+ are 0.18 ± 0.02 and 0.41 ± 0.05 respectively. These are significantly lower than the activity coefficients expected for the ions in physiological salt solutions (0.71 and 0.73, respectively). The activity coefficient for intracellular Cl (0.67 ± 0.03), however, is close to that of the medium (0.73), and the transmembrane electrochemical potential difference for Cl is not different from zero. The results establish that the energy available from the Na+ electrochemical gradient is much greater than previously estimated from chemical measurements.  相似文献   

10.
Proton fluxes have been followed into and out of membrane vesicles isolated from the roots of the halophyte Atriplex nummularia and the glycophyte Gossypium hirsutum, with the aid of the ΔpH probe [14C]methylamine. Evidence is presented for the operation of Na+/H+ and K+/H+ antiporters in the membranes of both plants. Cation supply after a pH gradient has been set up across the vesicle membrane (either as a result of providing ATP to the H+-ATPase or by imposing an artificial pH gradient) brings about dissipation of the ΔpH, but does not depolarize the membrane potential as observed in similar experiments, but in the absence of Cl, using the ΔΨ probe SCN. Cation/H+ exchange is thus indicated. This exchange is not due to nonspecific electric coupling, nor to competition for anionic adsorption sites on the membrane, nor to inhibition of the H+-ATPase; coupling of the opposed cation and H+ fluxes by a membrane component is the most likely explanation. Saturation kinetics have been observed for both Na+/H+ and K+/H+ antiport in Atriplex. Moreover, additive effects are obtained when Na+ is supplied together with saturating concentrations of K+, and vice versa, suggesting that separate antiporters for Na+ and for K+ may be operating. In the case of both Atriplex and Gossypium evidence was obtained suggesting the presence of antiporters in both plasmalemma and tonoplast.  相似文献   

11.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

12.
Summary Simultaneous measurements of net ion and water fluxes were made in the stripped intestine of the seawater eel, and the relationship between Na+, K+, Cl and water transport were examined in the presence of mucosal KCl and serosal NaCl Ringer (standard condition). When Cl was removed from both sides of the intestine, net K+ flux from mucosa to serosa was reduced, accompanied by complete blockage of water absorption. Since it has been shown that net Cl and water fluxes depend on K+ transport under the standard condition (Ando 1983), the interdependence of K+ and Cl transport suggests the existence of a coupled KCl transport system, while the parallelism between the net Cl and water fluxes suggests that water absorption is linked to the coupled KCl transport. The coupled KCl and water transport were inhibited by treatment with ouabain or with Na+-free Ringer solutions, suggesting the existence of a Na+-dependent KCl transport system and linkage of water absorption to the coupled Na+–K+–Cl transport. Since ouabain blocked the active Na+–K+–Cl transport almost completely, the permeability coefficients for K+ and Na+ through the paracellular shunt pathway were estimated as PK=0.076 and PNa=0.058 cm/h, and PCl was calculated as 0.005 cm/h. Although Na+-independent K+ and Cltt- fluxes were observed again in the present study, these fluxes were not inhibited by CN, ouabain or diuretics, and evoked even after blocking the Na+–K+–Cl transport completely with ouabain. These results indicate that the Na+-independent K+ and Cl fluxes are distinct from the active Na+–K+–Cl transport and are not themselves active.  相似文献   

13.
The long arm of chromosome 4D of wheat (Triticum aestivum L.) contains a gene (or genes) which influences the ability of wheat plants to discriminate between Na+ and K+. This discrimination most obviously affects transport from the roots to the shoots, in which less Na+ and more K+ accumulate in those plants which contain the long arm of chromosome 4D. Concentrations of Na+ and K+ in the roots, and Cl concentrations in the roots and shoots, are not significantly affected by this trait, but Na+, K+ and Cl contents of the grain are reduced. The trait operates over a wide range of salinities and appears to be constitutive. At the moment it is not possible to determine accurately the effect of this trait on growth or grain yield because the aneuploid lines which are available are much less vigorous and less fertile than their euploid parents.  相似文献   

14.
研究了渗透和盐胁迫处理对转Bt基因抗虫棉(Gossypium hirsutum) 99B种子的萌发和幼苗生长的影响,以及幼苗不同器官离子吸收和分配的差异。结果表明:渗透和盐胁迫均对转Bt基因抗虫棉幼苗的生长有抑制作用,其中PEG的抑制作用最强,而3种盐的抑制程度以CaCl2>NaCl>Na2SO4,且在Na+含量相同时,Cl-的毒害大于SO42-。渗透胁迫下使根、茎和叶中的Na+和Cl-含量提高,K+、Ca2+、SO42-含量和K+/Na+、Ca2+/Na+和SO42-/Cl-比值降低,且地上部的变化幅度大于地下部的,其中以PEG的影响最为显著,其次是CaCl2,Na2SO4处理最弱。这些说明,转Bt基因抗虫棉99B的耐盐性较弱。  相似文献   

15.
Abstract Radioisotope equilibration techniques have been used to determine the intracellular concentration of K+, Na+ and Cl?, together with the unidirectional ion fluxes across the plasmalemma of Porphyra purpurea. Influx and efflux of 42K+, 24Na+ and 36C1? are biphasic, the rapid, initial uptake and loss of tracer from individual thalli being attributable to desorption from extracellular regions. Cellular fluxes are slower and monophasic, cells discriminating in favour of K+ and Cl? and against Na+. A comparison between the equilibrium potential of individual ion species and the measured membrane potential demonstrates that there is an active component of K+ and Cl? influx and Na+ efflux. ‘Active’ uptake and ‘passive’ loss of K+ and Cl? are reduced when plants are kept in darkness, suggesting that a fraction of the transport of K+ and Cl? may be due to ‘exchange diffusion’ (K+/K+ and Cl?/Cl?antiport).  相似文献   

16.
17.
Shoots of Thellungiella derived by micropropagation were used to estimate the plants'' salt tolerance and ability to regulate Na+ uptake. Two species with differing salt tolerances were studied: Thellungiella salsuginea (halophilla), which is less tolerant, and Thellungiella botschantzevii, which is more tolerant. Although the shoots of neither ecotype survived at 700 mM NaCl or 200 mM Na2SO4, micropropagated shoots of T. botschantzevii were more tolerant to Na2SO4 (10–100 mM) and NaCl (100–300 mM). In the absence of roots, Na2SO4 salinity reduced shoot growth more dramatically than NaCl salinity. Plantlets of both species were able to adapt to salt stress even when they did not form roots. First, there was no significant correlation between Na+ accumulation in shoots and Na+ concentration in the growth media. Second, K+ concentrations in the shoots exposed to different salt concentrations were maintained at equivalent levels to control plants grown in medium without NaCl or Na2SO4. These results suggest that isolated shoots of Thellungiella possess their own mechanisms for enabling salt tolerance, which contribute to salt tolerance in intact plants.Key words: Thellungiella salsuginea, Thellungiella botschantzevii, salt tolerance, isolated shoots, growth, rhizogenesis, ion accumulation  相似文献   

18.
P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+] i , activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier (∼50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+ i , BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+,Cl cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4,5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+,Cl cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism. Received: 29 July 1998/Revised: 19 October  相似文献   

19.
《Developmental biology》1987,122(2):432-438
The fertilization potential of the Pseudocentrotus depressus egg involved three transiently depolarizing components which had a different time course and a peak value. Three peaks were at less than 10 sec, 43 ± 4 sec (mean ± SD), and 182 ± 22 sec after the onset of the fertilization potential. Their peak values (mean ± SD) were 37 ± 4, 17 ± 3, and −31 ± 5 mV in standard artificial sea water. The effect of external ions on the membrane potential at the peak of the second component was measured with a conventional voltage-recording microelectrode. The peak value changed 51 mV with a 10-fold change in external Na+ concentration. However, it was about 65 mV more negative than the equilibrium potential of Na+, assuming that the internal Na+ concentration was 13.5 mM. H+, Ca2+, Mg2+, and Cl did not contribute to the peak value. The peak value was sensitive to the external K+ concentration. These data fitted a theoretical line obtained from the Goldman-Hodgkin-Katz equation, using a ratio of PNa:PK:PCl = 1.1:1.0:0. This means that the permeability to both Na+ and K+ is responsible for the second component of the fertilization potential. The fertilization potential was also measured in the artificial sea water containing Li+ or Cs+. The egg at the second component of the fertilization potential was almost equally permeable to Li+ as well as Na+ or K+ and somewhat permeable to Cs+. By contrast, the resting membrane potential before fertilization depended to a large extent upon K+ permeability.  相似文献   

20.
Using radio-tracers, we measured Na+ and K+ accumulation in roots and transport to shoots in Zea mays (cv Pioneer 3906) as a function of NaCl concentration and O2 partial pressure in the nutrient solution. Under fully aerobic conditions, roots partially excluded Na+ from the shoots over a wide range of NaCl concentration (0.2-200 millimolar). With root anoxia, the exclusion mechanism broke down so that much greater amounts of Na+ reached the shoots, with simultaneous inhibition of K+ transport. The ratio Na+/K+ entering the shoot consequently increased 90 to 200 times. Increases in Na+ transport were first detected when the O2 partial pressure was reduced from ambient (21% v/v) to 15%, whereas K+ transport was not inhibited until O2 concentrations were <5%. Since soil O2 deficiency can often accompany high salinity in irrigation agriculture, failure of the Na+ exclusion mechanism may be a contributory factor in salinity damage of salt-sensitive glycophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号