首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous research has confirmed that cobalt ion and dimethylbenzimidazole (DMBI) are the precursors of vitamin B12 biosynthesis, and porphobilinogen synthase (PBG synthase) is a zinc-requiring enzyme. In this paper, the effects of Zn2+, Co2+ and DMBI on vitamin B12 production by Pseudomonas denitrificans in shake flasks were studied. Present experimental results demonstrated that the addition of the above mentioned three components to the fermentation medium could significantly stimulate the biosynthesis of vitamin B12. The concentrations of zinc sulphate, cobaltous chloride and DMBI in the fermentation medium were further optimized with rotatable orthogonal central composite design and statistical analysis by Data Processing System (DPS) software. As a result, vitamin B12 production was increased from 69.36 ± 0.66 to 78.23 ± 0.92 μg/ml.  相似文献   

2.
Effects of elevated CO2 and nutrient availability on nectar production and onset of flowering in five different seed families (genotypes) of Epilobium angustifolium were investigated in a greenhouse experiment. Elevated CO2 significantly increased nectar production per day (+51%, p < 0.01), total sugar per flower (+41%, p < 0.05), amino acid concentration (+65%, p < 0.05) and total amino acids per flower (+192%, p < 0.001). All other parameters tested, i.e., nectar sugar concentration, proportion of glucose/fructose and proportion of sucrose/(glucose + fructose), were not significantly affected by elevated CO2 and/or fertilization. However, elevated CO2 caused a marginally significant trend for earlier flowering in highly fertilized plants. No significant family × CO2 interaction was found in any of the tested parameters, but the response in nectar production varied considerably among seed families (+10 to +104%) and was significantly positive in two of the five seed families investigated. Our results are not consistent with earlier studies on effects of elevated CO2 on nectar production and flowering phenology in other plant species. It seems, on the other hand, that CO2 effects on nectar production are specific to species and genotype. Hence, no general conclusions about effects of elevated CO2 on these floral traits can be drawn at present, but it must be cautioned that elevated CO2 might not only increase floral rewards as in E. angustifolium, but might also lead to shifts or even disruptions in fine-tuned plant–pollinator interactions.  相似文献   

3.
Yield of S-adenosylmethionine was improved significantly in recombinant Pichia pastoris by controlling NH4 + concentration. The highest production rate was 0.248 g/L h when NH4 + concentration was 450 mmol/L and no repression of cell growth was observed. Within very short induction time (47 h), 11.63 g/L SAM was obtained in a 3.7 L bioreactor.  相似文献   

4.
In many temperate-zone ecosystems, seasonal changes in environmental and biological factors influence the dynamics and magnitude of surface–atmosphere exchange. Research was conducted between July and October 2001 to measure growing season surface-layer fluxes of CO2 in a Deyeuxia angustifolia dominated wetland on the Sanjiang Plain in northeastern China. Seasonal fluctuation and daily change in soil-surface CO2 fluxes were measured as well as the edaphic factors controlling CO2 fluxes. Soil-surface CO2 fluxes were measured with a closed-chamber system. The results revealed that there were both seasonal fluctuations and daily change in CO2 fluxes. The ranges of measured soil-surface CO2 flux were 0.208 – 1.265 g CO2m–2h–1. Soil-surface CO2 fluxes averaged 0.620 g CO2 m–2h–1. An analysis of several edaphic factors including soil temperature and soil moisture of the D. angustifolia wetland showed that there was a significant relationship between flux and temperature (R2 = 0.77).  相似文献   

5.
One-year-old oak (Quercus mongolica Fisch.) seedlings were grown in growth chambers for 30 days to investigate the effects of the combination of elevated CO2 concentration ([CO2], 700 μmol/mol) and temperature (ambient T + 4°C) and only elevated temperature (ambient T +4°C) on leaf gas exchange, chlorophyll a fluorescence, and chlorophyll content. In the growth chambers, natural conditions of the Maoershan mountain regions of Heilongjiang Province (45–46°N, 127–128°E) of China for the average growth season were simulated. The results showed that the maximum net photosynthetic rate (P Nmax) was ≈ 1.64 times greater at elevated temperature than at ambient temperature. The irradiance saturation point (I s), apparent quantum yield (AQY), maximum photosystem II efficiency (F v/F m), and chlorophyll content significantly increased, while irradiance compensation point (I c) was not affected by elevated temperature. The combination of elevated [CO2] and temperature also significantly increased P Nmax by approximately 34% but much lower than that under elevated temperature only. In the case of factor combination, dark respiration (R d), I c, F v/F m, and total chlorophyll content increased significantly, while I s and AQY were not affected. Moreover, under elevated [CO2] and temperature, R d and I c, F v/F m were significantly higher than under elevated temperature only. The results indicated that the combination of elevated [CO2] and temperature expected in connection with the further global climate change may affect carbon storage of the coenotype of Q. mongolica in this region of China. This text was submitted by the authors in English.  相似文献   

6.
We experimentally demonstrate that elevated CO2 can modify herbivory-induced plant chemical responses in terms of both total and individual glucosinolate concentrations. Overall, herbivory by larvae of diamondback moths (Plutella xylostella) resulted in no change in glucosinolate levels of the annual plant Arabidopsis thaliana under ambient CO2 conditions. However, herbivory induced a significant 28–62% increase in glucosinolate contents at elevated CO2. These inducible chemical responses were both genotype-specific and dependent on the individual glucosinolate considered. Elevated CO2 can also affect structural defenses such as trichomes and insect-glucosinolate interactions. Insect performance was significantly influenced by specific glucosinolates, although only under CO2 enrichment. This study can have implications for the evolution of inducible defenses and coevolutionary adaptations between plants and their associated herbivores in future changing environments.  相似文献   

7.
The photosynthetic responses of the tropical tree species Acacia nigrescens Oliv. grown at different atmospheric CO2 concentrations—from sub-ambient to super-ambient—have been studied. Light-saturated rates of net photosynthesis (A sat) in A. nigrescens, measured after 120 days exposure, increased significantly from sub-ambient (196 μL L−1) to current ambient (386 μL L−1) CO2 growth conditions but did not increase any further as [CO2] became super-ambient (597 μL L−1). Examination of photosynthetic CO2 response curves, leaf nitrogen content, and leaf thickness showed that this acclimation was most likely caused by reduction in Rubisco activity and a shift towards ribulose-1,5-bisphosphate regeneration-limited photosynthesis, but not a consequence of changes in mesophyll conductance. Also, measurements of the maximum efficiency of PSII and the carotenoid to chlorophyll ratio of leaves indicated that it was unlikely that the pattern of A sat seen was a consequence of growth [CO2] induced stress. Many of the photosynthetic responses examined were not linear with respect to the concentration of CO2 but could be explained by current models of photosynthesis.  相似文献   

8.
Golléty C  Gentil F  Davoult D 《Oecologia》2008,155(1):133-142
Calcification, a process common to numerous marine taxa, has traditionally been considered to be a significant source of CO2 in tropical waters only. A number of relatively recent studies, however, have shown that significant amounts of CO2 are also produced in temperate waters, although none of these studies was carried out on rocky shores, which are considered to be very productive systems. We compared the CO2 fluxes due to respiration and calcification in two temperate species, the cirripedes Chthamalus montagui and Elminius modestus. The population dynamics of both species were estimated at two sites during a 1-year experimental period in order to establish mean organic (ash-free dry weight) and CaCO3 (dry shell weight) production. Based on these parameters, we estimated the CO2 fluxes due to respiration and calcification. CaCO3 production was estimated to be 481.0 and at each site, representing 3.4 and respectively, of released CO2. These fluxes represent each 47% of the CO2 released as a result of respiration and calcification. The production of CaCO3 at the high-density site was: (1) among the highest values obtained for temperate organisms, and (2) comparable to the estimated CO2 fluxes for coral reefs. As calcifying organisms are well represented in temperate ecosystems in terms of both density and biomass, our results provide clear evidence that calcification of temperate organisms should not be underestimated. Additional studies on other rocky shore taxa are needed before the relative importance of calcification in rocky intertidal carbon budgets can be generalized.  相似文献   

9.
Of various metal ions (Ca2+, Cr3+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+ and Zn2+) added to the culture medium of Agrobacterium tumefaciens at 1 mM, only Ca2+ increased Coenzyme Q10 (CoQ10) content in cells without the inhibition of cell growth. In a pH-stat fed-batch culture, supplementation with 40 mM of CaCO3 increased the specific CoQ10 content and oxidative stress by 22.4 and 48%, respectively. Also, the effect of Ca2+ on the increase of CoQ10 content was successfully verified in a pilot-scale (300 L) fermentor. In this study, the increased oxidative stress in A. tumefaciens culture by the supplementation of Ca2+ is hypothesized to stimulate the increase of specific CoQ10 content in order to protect the membrane against lipid peroxidation. Our results improve the understanding of Ca2+ effect on CoQ10 biosynthesis in A. tumefaciens and should contribute to better industrial production of CoQ10 by biological processes.  相似文献   

10.
The coefficient of effectiveness (K e) of assimilated CO2 conversion into dry matter of cucumber (Cucumis sativus L.) plants at the stage of four leaves as dependent on a photoperiod (8, 12, and 16 h) at an irradiance of 220 W/m2 at the upper leaf level and the combinations of day and night temperatures: typical temperature of plant habitat (background temperature) of 25°C and heat- and cold-hardening temperatures (35 and 15°C, respectively) was determined in the multifactorial designed experiment. K e reduced insignificantly at shortening of a photoperiod and greater at its lengthening. At background temperatures, K e corresponded mainly to that of carbohydrate synthesis while the presence of cold-hardening temperatures in the thermoperiod increased K e and heat-hardening temperature reduced it.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 203–208.Original Russian Text Copyright © 2005 by Talanov, Popov, Kurets, Drozdov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

11.
Effects of exogenous H2O2 application on vinblastine (VBL) and its precursors, vindoline (VIN), catharanthine (CAT) and α-3′,4′-anhydrovinblastine (AVBL), were measured in Catharanthus roseus seedlings in order to explore possible correlation of VBL formation with oxidative stress. VBL accumulation has previously been shown to be regulated by an in vitro H2O2-dependent peroxidase (POD)-like synthase. Experimental exposure of plants to different concentrations of H2O2 showed that endogenous H2O2 and alkaloid concentrations in leaves were positively elevated. The time-course variations of alkaloid concentrations and redox state, reflected by the concentrations of H2O2, ascorbic acid (AA), oxidative product of glutathione (GSSG) and POD activity, were significantly altered due to H2O2 application. The further correlation analysis between alkaloids and redox status indicated that VBL production was tightly correlated with redox status. These results provide a new link between VBL metabolisms and redox state in C. roseus.  相似文献   

12.
Culture experiments were carried out with Acropora sp. (a branching scleractinian coral) in seawater at two pCO2 conditions (438 and 725 µatm) and two temperatures (25 and 28 °C) in order to establish the pH and temperature dependence of the boron isotopic composition of the skeleton. A clear pCO2 effect, but no temperature effect, on the coral boron isotope composition is seen. For corals cultured at normal pCO2 (438 µatm), the 11B of the skeleton was 24.0±0.2 at 25 °C, and 23.9±0.3 at 28 °C. The values of 11B measured for corals cultured at higher pCO2 (725 µatm) were lower: 22.5±0.1, and 22.8±0.1 at 25 and 28 °C, respectively. The 11B of corals cultivated at both high and normal pCO2 conditions are consistent with a dominant pH control, and are very close to that calculated from theoretical considerations. Thus, the corals do not seem to significantly alter ambient seawater for calcification with respect to pH. Co-variation between boron and carbon isotope values is explored.Communicated by: Guest Editor A. Grottoli  相似文献   

13.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

14.
15.
Plants differ in how much the response of net photosynthetic rate (P N) to temperature (T) changes with the T during leaf development, and also in the biochemical basis of such changes in response. The amount of photosynthetic acclimation to T and the components of the photosynthetic system involved were compared in Arabidopsis thaliana and Brassica oleracea to determine how well A. thaliana might serve as a model organism to study the process of photosynthetic acclimation to T. Responses of single-leaf gas exchange and chlorophyll fluorescence to CO2 concentration measured over the range of 10–35 °C for both species grown at 15, 21, and 27 °C were used to determine the T dependencies of maximum rates of carboxylation (VCmax), photosynthetic electron transport (Jmax), triose phosphate utilization rate (TPU), and mesophyll conductance to carbon dioxide (gm). In A. thaliana, the optimum T of P N at air concentrations of CO2 was unaffected by this range of growth T, and the T dependencies of VCmax, Jmax, and gm were also unaffected by growth T. There was no evidence of TPU limitation of P N in this species over the range of measurement conditions. In contrast, the optimum T of P N increased with growth T in B. oleracea, and the T dependencies of VCmax, Jmax, and gm, as well as the T at which TPU limited P N all varied significantly with growth T. Thus B. oleracea had much a larger capacity to acclimate photosynthetically to moderate T than did A. thaliana.  相似文献   

16.
17.
The phenotypic characteristics of the species Sulfobacillus thermotolerans Kr1T, as dependent on the cultivation conditions, are described in detail. High growth rates (0.22–0.30 h?1) and high oxidative activity were recorded under optimum mixotrophic conditions at 40 °C on medium with inorganic (Fe(II), S0, or pyrite-arsenopyrite concentrate) and organic (glucose and/or yeast extract) substrates. In cells grown under optimum conditions on medium with iron, hemes a, b, and, most probably, c were present, indicating the presence of the corresponding cytochromes. Peculiar extended structures in the form of cylindrical cords, never observed previously, were revealed; a mucous matrix, likely of polysaccharide nature, occurred around the cells. In the cells of sulfobacilli grown litho-, organo-, and mixotrophically at 40 °C, the enzymes of the three main pathways of carbon utilization and some enzymes of the TCA cycle were revealed. The enzyme activity was maximum under mixotrophic growth conditions. The growth rate in the regions of limiting temperatures (55 °C and 12–14 °C) decreased two-and tenfold, respectively; no activity of 6-phosphogluconate dehydrogenase, one of the key enzymes of the oxidative pentose phosphate pathway, could be revealed; and a decrease in the activity of almost all enzymes of glucose metabolism and of the TCA cycle was observed. The rate of 14CO2 fixation by cells under auto-, mixo-, and heterotrophic conditions constituted 31.8, 23.3, and 10.3 nmol/(h mg protein), respectively. The activities of RuBP carboxylase (it peaked during lithotrophic growth) and of carboxylases of heterotrophic carbon dioxide fixation were recorded. The physiological and biochemical peculiarities of the thermotolerant bacillus are compared versus moderately thermophilic sulfobacilli.  相似文献   

18.
The present study on efficacy of different Glomus species, an arbuscular mycorrhizal (AM) fungus (G. aggregatum, G. fasciculatum, G. mosseae, G. intraradices) on various growth parameters such as biomass, macro and micronutrients, chlorophyll, protein, cytokinin and alkaloid content and phosphatase activity of pink flowered Catharanthus roseus plants showed that all Glomus species except G. intraradices enhanced the chlorophyll, protein, crude alkaloid, phosphorus, sulphur, manganese and copper contents of C. roseus plants along with phosphatase activity significantly over uninoculated plants. However only G. mosseae and G. fasciculatum exhibited superior symbiotic relationship with the plant. G. mosseae was found to be the best for increasing the crude alkaloid content (8.19%) in leaf and also in increasing the quantity of important alkaloids vincristine and vinblastine.  相似文献   

19.
Many bacteria adapt to microoxic conditions by synthesizing a particular cytochrome c oxidase (cbb 3) complex with a high affinity for O2, encoded by the ccoNOQP operon. A survey of genome databases indicates that ccoNOQP sequences are widespread in all sub-branches of Proteobacteria but otherwise are found only in bacteria of the CFB group (Cytophaga, Flexibacter, Bacteroides). Our analysis of available genome sequences suggests four major strategies of regulating ccoNOQP expression in response to O2. The most widespread strategy involves direct regulation by the O2-responsive protein Fnr. The second strategy involves an O2-insensitive paralogue of Fnr, FixK, whose expression is regulated by the O2-responding FixLJ two-component system. A third strategy of mixed regulation operates in bacteria carrying both fnr and fixLJ-fixK genes. Another, not yet identified, strategy is likely to operate in the -Proteobacteria Helicobacter pylori and Campylobacter jejuni which lack fnr and fixLJ-fixK genes. The FixLJ strategy appears specific for the -subclass of Proteobacteria but is not restricted to rhizobia in which it was originally discovered.  相似文献   

20.
Although arsenic is an infamous carcinogen, it has been effectively used to treat acute promyelocytic leukemia, and can induce cell cycle arrest or apoptosis in human solid tumors. Previously, we had demonstrated that opposing effects of ERK1/2 and JNK on p21 expression in response to arsenic trioxide (As2O3) are mediated through the Sp1 responsive elements of the p21 promoter in A431 cells. Presently, we demonstrate that Sp1, and c-Jun functionally cooperate to activate p21 promoter expression through Sp1 binding sites (−84/−64) by using DNA affinity binding, chromatin immunoprecipitation, and promoter assays. Surprisingly, As2O3-induced c-Jun(Ser63/73) phosphorylation can recruit TGIF/HDAC1 to the Sp1 binding sites and then suppress p21 promoter activation. We suggest that, after As2O3 treatment, the N-terminal domain of c-Jun phosphorylation by JNK recruits TGIF/HDAC1 to the Sp1 sites and then represses p21 expression. That is, TGIF is involved in As2O3-inhibited p21 expression, and then blocks the cell cycle arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号