首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We wished to compare cumulus oocyte complex (COC) recovery and follicle development after single and repeated ultrasound-guided transvaginal follicle aspiration (aspiration). Aspirations were performed in Holstein-Friesian heifers every once weekly (every 7 d; n = 12) or twice weekly (every 3 or 4 d; n = 6) starting on Days 3 or 4 of the estrous cycle (estrus = Day 0) and continuing for 4 wk. During each session, all visible follicles > 2 mm were aspirated using an 7.5 MHz transducer to guide an 18 ga x 60 cm single lumen needle and applying 50 mm Hg vacuum which generated 25 mL/min. The COC's harvested from each follicle were counted and classified into 4 categories. Post-aspiration follicle wave emergence was traced by daily ultrasound examinations. A total of 1410 follicles were aspirated during 96 sessions, yielding 632 (45%)oocytes. There was no difference in average COC/follicle recovered between the single vs the repeated aspiration treatment. However, ovaries of heifers subjected to two aspirations per week yielded more follicles (17.2 +/- 5.7 vs 12.4 +/- 6.1; P < 0.01) and COC's (7.7 +/- 4.5 vs 5.4 +/- 3.7; P < 0.01) per session than those subjected to a single aspiration. Ovaries of heifers subjected to twice weekly aspirations at 4-d intervals resulted in a higher recovery rate (51.1 vs 38.6%), yielded more COC's (9.3 +/- 4.7 vs 6.2 +/- 3.8) and a higher number of viable COC's recovered per session (7.6 +/- 3.8 vs 5.2 +/- 3.3) than those aspirated every 3 d, all P < 0.01. Aspiration-induced follicle waves were indicated by an increased number of follicle > or = 4 mm seen within 2 d of the procedure. We conclude that follicle aspiration appears to induce and synchronize follicle waves, and when it is done twice a week it is associated with higher number of harvestable follicles and more oocytes recovered than when done once a week. These results can be attributed to the aspiration of a newly recruited pull of follicles 3 or 4 d after the first aspiration and before the establishment of follicular dominance and regression of subordinate follicles.  相似文献   

2.
A transvaginal ultrasound guided follicular aspiration technique was developed for the repeated collection of bovine oocytes from natural cycling cows. In addition, the feasibility of using this method for collecting immature oocytes for in vitro embryo production was also evaluated. Puncturing of visible follicles for ovum pick-up was performed in 21 cows over a three month period. All visible follicles larger than 3 mm were punctured and aspirated three times during the estrous cycle on Day 3 or 4, Day 9 or 10 and Day 15 or 16. The mean (+/- SEM) estrous cycle length after repeated follicle puncture was 22.2 +/- 0.3 days. The mean total number of punctured follicles per estrous cycle was 12.6 +/- 0.3. The largest (P<0.05) number of follicles punctured (5.1 +/- 0.3) for ovum pick-up was on Day 3 or 4 of the estrous cycle. The overall recovery rate of 541 punctured follicles was 55%. Most oocytes (P<0.05) were aspirated from follicles smaller than 10 mm. Following in vitro maturation and fertilization (IVM/IVF), 104 oocytes were transferred to sheep oviducts. Six days later, 75 ova/embryos were recovered, after flushing the oviduct of the sheep, of which 24% developed into transferable morulae and blastocysts. In this study, a reliable nonsurgical, follicular aspiration procedure was used for the repeated collection of immature oocytes which could be used successfully for in vitro production of embryos. This procedure offers a competitive alternative to conventional superovulation/embryo collection procedures.  相似文献   

3.
The growth, selection, regression and ovulation of ovarian follicles was ultrasonically monitored in 30 Murrah buffalo throughout a spontaneous estrous cycle during the breeding season (autumn). Examinations revealed that follicular growth during the estrous cycle occurs in waves; the buffalo showed 1-wave (3.3%, n = 1), 2-wave (63.3%, n = 19) or 3-wave (33.3%, n = 10) follicular growth. The first wave began at 1.00, 1.16 +/-0.50 and 1.10 +/- 0.32 d in buffalo with 1, 2 and 3 waves, respectively (ovulation = Day 0). The second wave appeared at 10.83 +/- 1.09 and 9.30 +/- 1.25 d (P < 0.01) for the 2 and 3 wave cycle animals, respectively. The third wave started at 16.80 +/- 1.22 d. Structural persistence of the first dominant follicle was longer in the 2- than 3-wave cycles (20.67 +/- 1.18 vs 17.90 +/- 3.47 d ; P < 0.05). The duration of the growth and static phases of the first dominant follicle differed between the 2 and 3 wave cycles (P < 0.05), whereas there were no differences in linear growth rates (cm/d). Two and three wave cycles differed (P < 0.05) with respect to the maximum diameter of both the first dominant follicle (1.51 +/- 0.24 vs 1.33 +/- 0.18 cm) and the ovulatory follicles (1.55 +/- 0.16 vs 1.34 +/- 0.13 cm). No relationship was found between dominant follicle development and the presence of either a CL or a previous dominant follicle in either ovary. Two and three wave cycles also differed with respect to the mean length of intervals between ovulation (22.27 +/- 0.89 vs 24.50 +/- 1.88 d; P < 0.01) and the mean length of luteal phases (10.40 +/- 2.11 vs 12.66 +/- 2.91 d; P < 0.05). These results demonstrate that buffalo have estrous cycles with 1, 2 or 3 follicular waves; that 2-wave cycles are the most common; and that the number of waves in a cycle is associated with the luteal phase and with estrous cycle length.  相似文献   

4.
A field experiment was conducted to determine the influence of follicular alteration on superovulatory responses. Ultrasonography was performed once daily over 4 d prior to gonadotropin treatment (Day 0), on the day of estrus during superstimulation, and on the day of embryo collection to monitor follicular development. Animals were superstimulated between Days 8 and 12 of the estrous cycle. Follicular status was altered 2 d prior to initiation of superstimulation (Day 0) with GnRH (Cystorelin, 200 micrograms i.m.) administered with (GnRH-puncture group, n = 31) or without (GnRH-no puncture group, n = 52) concomitant removal of the largest follicle by follicular aspiration. Responses were compared with those of an untreated control group superovulated 8 to 12 d after estrus (n = 102). The proportion of animals with a high number (> or = 2) of large follicles (> = 7 mm) on Day 0 was lower (P < 0.001) in the 2 GnRH-treated groups than in the control group, while the increase in the number of medium size follicles (4 to 6 mm) on Day 0 was greater (P < 0.02) in the GnRH-puncture group. During superstimulation, the proportion of superovulatory cycles with a high follicular (> or = 10 follicles) response was similar in the control and GnRH-no puncture groups. Within the GnRH-treated animals, follicular and ovulatory responses were greater in the GnRH-puncture than in the GnRH-no puncture group (P < 0.001 to P < 0.02). Despite these changes in follicular and ovulatory responses, however, the mean number of embryos produced did not differ (P < 0.1) among treatments (4.3 +/- 0.4, 3.7 +/- 0.7, and 5.4 +/- 0.8 in control, GnRH-no puncture, and GnRH-puncture groups, respectively). This was due primarily to an increase in the mean numbers of unfertilized ova (P < 0.005) and in degenerated embryos (P < 0.06) in the GnRH-puncture group. Results indicate that the beneficial effects of treatment with GnRH and follicular puncture 2 d prior to superstimulation on follicular and ovulatory responses were limited by an increase in the number of unfertilized ova and degenerated embryos.  相似文献   

5.
Repeated transvaginal ultrasound guided puncturing of visible follicles was performed for ovum pick-up (OPU) during Periods A and B, each of which lasted 3 mo. During Period A, 10 cows (A) were used in the study. Period B commenced 1 mo after Period A and two groups of animals were used. The first group (B1) consisted of 9 of 10 cows from Group A. The second experimental group of animals in Period B consisted of 11 cows (B2) which had not been submitted to previous puncture. During the study, all visible follicles larger than 3 mm were punctured and aspirated three times, on Day 3 or 4, Day 9 or 10 and Day 15 or 16 of the estrous cycle. The mean estrous cycle length (+/- SEM) after repeated follicle puncture did not differ among the three groups and was 22.3 +/- 0.4, 22.5 +/- 0.4 and 22.1 +/- 0.3 d for groups A, B1 and B2, respectively. The mean total number (+/- SEM) of punctured follicles per estrous cycle in Group A (13.1 +/- 0.5) was significantly larger than in Groups B1 (11.2 +/- 0.4) and B2 (11.6 +/- 0.4). The largest number of follicles punctured for ovum pick-up in all three groups was always on Day 3 or 4 of the estrous cycle: 4.9 +/- 0.3 follicles; the mean (+/- SEM) number of punctured follicles on Day 9 or 10 and Day 15 or 16 was significantly (P<0.05) lower: 3.4 +/- 0.2 and 3.9 +/- 0.2, respectively. In Period A, primarily 3- to 5-mm follicles were punctured per estrous cycle, while 6- to 10-mm follicles were predominantly punctured in Period B (P<0.05). Recovery rate of oocytes on Day 3 or 4, Day 9 or 10 and Day 15 or 16 were 53, 50 and 52%, respectively. Most oocytes (P<0.05) were aspirated from follicles smaller than 10 mm.  相似文献   

6.
Folliculogenesis was studied daily in the 18 oestrous cycles in six prolific Olkuska ewes from October to December using transrectal ultrasonography to record the number and size of all ovarian follicles > or =2 mm in diameter. Blood samples were taken once a day and were analyzed for concentrations of FSH, LH, estradiol and progesterone. Follicular and hormonal data were analyzed for associations between different stages of development of the follicular waves and concentrations of FSH and estradiol. The first wave during which at least one follicle reached maximum diameter of > or =4 mm after ovulation, was defined as a wave 1, and the following waves were numbered sequentially. Waves 1, 2, 3, 4 and the ovulatory one emerged on days: -2 to 4, 4 to 8, 6 to 11, 10 to 12 and 11 to 15, respectively. The mean number of follicles per wave that reached diameter of > or =4 mm was 4.15 +/- 1.1 and 16.62 +/- 8.6 follicles per estrous cycle of a total 299 follicles were observed. Significantly more follicles (p> or =0.05) emerged on days 2, 8 and 13 than in other days. Serum FSH concentrations fluctuated from 0.11 ngml(-1) on day 2 to preovulatory maximum 1.81 ngml(-1) on day 17 of the estrous cycle. The emergence of follicular waves was associated with elevations of FSH concentrations in blood serum. The mean increase in FSH concentration was followed by the recruitment of follicles of the next wave. The mean daily FSH concentration and the mean number of follicles emerging each day were negatively correlated. The length of the interwave interval (4.4 +/- 1.6 days) did not differ significantly from the interval between pulses of FSH (4.8 +/- 0.3 days). The mean serum estradiol concentrations showed fluctuations until day 14 and then gradually increased from 5.47 +/- 0.3 pgml(-1) to reach a peak 13.14 +/- 0.2 pgml(-1) on the day before ovulation. To summarize, the growth of ovarian follicles during the estrous cycle in high fecundity Olkuska sheep exhibited a distinct wave-like pattern. Ovarian follicles emerged from the pool of 2 mm follicles. The preovulatory follicles originated from the large follicle population were present in the ovary at the time of luteal regression. The initial stages of the growth of the largest follicles appears to be controlled primarily by increases in FSH secretion.  相似文献   

7.
The reproductive tracts of 13 mature hinds were examined daily by transrectal ultrasonography and blood samples were taken daily from October to January to characterize follicular, luteal, and endocrine dynamics in wapiti during the estrous season. Follicle development occurred in waves characterized by regular, synchronous development of a group of follicles in temporal succession to a surge in serum FSH concentration. The mean interovulatory interval was 21.3 +/- 0.1 d, but was shorter in hinds exhibiting two follicular waves than in hinds exhibiting three and four waves (P < 0.05). The interwave interval was similar among waves in two-wave cycles and the first wave of three-wave cycles. All other interwave intervals in three- and four-wave cycles were shorter (P < 0.05). The maximum diameter of the dominant follicle of the first wave was similar among two-, three-, and four-wave cycles. For all other waves in three- and four-wave cycles, the maximum diameter was smaller (P < 0.05). Corpus luteum diameter and plasma progesterone concentrations were similar between two- and three-wave cycles, but the luteal phase was longer (P < 0.05) in four-wave cycles. The dominant follicle emerged at a diameter of 4 mm at 0.4 +/- 0.1 and 0.8 +/- 0.1 d before the largest and second largest subordinate follicles, respectively. The follicle destined to become dominant was larger (P < 0.05) than the largest subordinate follicle one day after emergence, which coincided with the first significant decrease in serum FSH concentration. We concluded that the estrous cycle in wapiti is characterized by two, three, or four waves of follicular development (each preceded by a surge in circulating FSH), that there is a positive relationship between the number of waves and the duration of the cycle, and an inverse relationship between the number of waves and the magnitude of follicular dominance (diameter and duration of the dominant follicle).  相似文献   

8.
The present study aimed to determine systemic and local effects of corpora lutea (CL), on follicular dynamics throughout the estrous cycle. All follicles >or=2 mm and CL were assessed by daily transrectal ultrasonography in 12 West African ewes. Blood samples were collected to determine plasma concentration of progesterone. Fifteen estrous cycles were evaluated with a mean interovulatory interval of 16.8+/-0.2 days. Two (13.3%), 10 (66.7%) and 3 (20%) of the estrous cycles had 2, 3 and 4 waves of follicular development, respectively. In sheep with three waves of follicular development, both the length of growing phase and the growth rate of dominant follicles from midluteal wave II were diminished (3.4+/-0.3 days, P<0.0001, and 0.4+/-0.1 mm/day, P<0.01, respectively) when compared to follicles from early luteal phase (wave I, 4.1+/-0.2 days, and 0.7+/-0.1 mm/day) or late luteal phase (wave III, 6.3+/-0.4 mm and 0.6+/-0.1 mm/day). The diameter of the dominant follicle was smaller during the midluteal phase (3.9+/-0.1 mm, P<0.0001) than in the early and late luteal phase (5.0+/-0.2 and 5.7+/-0.2 mm; respectively). The effect of the dominant follicle was less during midluteal phase, because number of accompanying smaller follicles was fewer (P<0.01) in waves I and III (6.3+/-0.9 compared with 3.4+/-0.8 and 2.3+/-0.7). The number of follicles was also different between ovaries that had CL and those that did not. The total number of large follicles during the luteal phase was less in ovaries with CL (0.9+/-0.5 compared with 2.7+/-0.3; P<0.01), as was the mean daily number of both large (0.1+/-0.02 compared with 0.2+/-0.02; P<0.001) and total number of follicles >or=2 mm (2.5+/-0.1 compared with 3.3+/-0.1; P<0.01). Current results indicate that the presence of a functional CL may exert both systemic and local effects on the population of follicles, affecting the dominance exerted by large follicles.  相似文献   

9.
The pattern of ovarian follicle development in maiden cyclic lambs was characterized using the definition of a follicle wave as the changes in the number of follicles among the days of the estrous cycle, as originally defined in cattle by Rajakoski in 1960. We also examined the steroid content relationships among follicles on Days 5 (Wave 1) and 14 (Waves 2 and 3) of the estrous cycle. In Experiment 1, the ovaries of 20 cyclic lambs (40 to 45 kg) were examined daily using transrectal ultrasonography for 1 or 2 estrous cycles (n = 31 cycles). The number of small (2 and 3 mm in diameter), medium (4 and 5 mm) and large (> or = 6 mm) follicles were aligned with the beginning and end of the average length estrous cycle and then compared among days. Identified follicles were defined as those that grew to > or = 4 mm and remained at > or = 3 mm for > or = 3 d. The number of identified follicles emerging (retrospectively identified at 2 or 3 mm) per ewe per day was also aligned with the average length estrous cycle. In Experiment 2, ewe lambs were ovariectomized on Day 5 (n = 6) or 14 (n = 5) of the estrous cycle, then follicle diameters and follicular fluid concentrations of estradiol and progesterone were compared among follicles. Data were analyzed by repeated measures ANOVA and compared among days using Fisher's LSD. In Experiment 1, either 2 (n = 10 cycles), 3 (n = 20 cycles) or 4 (n = 1 cycle) periods of emergence of identified follicles occurred during individual cycles, with estrous cycle lengths of 15.6 +/- 1.6, 16.1 +/- 1.1 and 17 d respectively. In animals with 2 or 3 periods of emergence of identified follicles, the total number of small, medium and large follicles differed (P < 0.05) among days of the estrous cycle showing a wave-like pattern. In Experiment 2, a single follicle collected on each of Days 5 and 14 of the cycle (6.2 +/- 0.2 and 3.9 +/- 0.2 mm in diameter) had a higher (P < 0.05) concentration of follicular fluid estradiol (36.2 +/- 4.4 and 50.9 +/- 21.6 ng/mL) than other follicles collected on the same day (next largest follicle: 4.3 +/- 0.3 and 3.5 +/- 0.4 mm; 4.3 +/- 0.9 and 18.2 +/- 6.7 ng/mL estradiol). The results showed that 1) there was a synchronous emergence of follicles associated with fluctuations in the number and size of follicles during the estrous cycle; 2) within a wave there was a hierarchy among follicles for diameter and steroid content; 3) ovarian follicle growth in ewe lambs occurred in 2 or 3 organized waves during the estrous cycle.  相似文献   

10.
It is not clear whether the turnover of ovarian follicles during the estrous cycle in cattle is continuous and independent of the phase of the cycle, or whether waves of follicular growth occur at specific times of the cycle. To clarify this controversy, the pattern of growth and regression of ovarian follicles was characterized during a complete estrous cycle in ten heifers by daily ultrasonographic examinations. Follicles greater than or equal to 5 mm were measured and their relative locations within the ovary were determined in order to follow the sequential development of each individual follicle. Results indicated the presence of either two (n = 2 heifers), three (n = 7), or four (n = 1) waves of follicular growth per cycle. Each wave was characterized by the development of one large (dominant) follicle and a variable number of smaller (non-dominant) follicles. In the most common pattern observed (three waves/cycle), the first, second, and third waves started on Days 1.9 +/- 0.3, 9.4 +/- 0.5, and 16.1 +/- 0.7 (X +/- SEM), respectively. The dominant follicle in the third wave was the ovulatory follicle. The maximal size and the growth rate of the dominant follicle in the second wave were significantly lower than in the other waves, but no significant difference was observed between the first and third waves. For the two heifers that had two follicular waves/cycle, the waves started on Days 2 and 11, whereas in the remaining heifer (four waves/cycle), the waves began on Days 2, 8, 14, and 17, respectively. At 0, 1, 2, 3, and 4 days before estrus, the ovulatory follicle was the largest follicle in the ovaries in 100%, 95%, 74%, 35%, and 25% of follicular phases monitored, respectively. The relative size of the preovulatory follicle at the completion of luteolysis (progesterone less than 1 ng/ml) was negatively correlated (r = -0.90; p less than 0.0001) with the interval of time between the end of luteolysis and the luteinizing hormone surge, suggesting that the length of proestrus is determined by the size of the pre-ovulatory follicle at the beginning of proestrus. In conclusion, this study shows that the development of ovarian follicles greater than or equal to 5 mm in heifers occurs in waves and that the most common pattern is three waves per estrous cycle.  相似文献   

11.
Ovarian follicular dynamics in the llama   总被引:1,自引:0,他引:1  
Ovarian follicular dynamics were determined in adult llamas by ultrasonography and palpation per rectum and hormone analysis (estradiol-17 beta and estrogen conjugates) of plasma and urine. The relationship of gonadotropin secretion to follicular development was determined by the analysis of plasma FSH and LH concentrations. Progesterone analysis of plasma was used to verify or deny the presence of CL. Final follicular development (from 3 mm) averaged 4.8 days, while the duration of the mature follicle (8-12 mm) averaged 5.0 days; regression of the follicle occurred over about 4 days. The development of a subsequent dominant follicle usually began within 2-3 days after onset of regression of the dominant follicle. While several follicles were present at the time of the demise of the dominant follicle, only one follicle continued to develop. The interval between ovarian follicle waves averaged 11.1 days. Dominant follicle activity alternated between ovaries in 81% of the cycles. The occurrence of dominant follicles was evenly distributed between ovaries. While plasma estradiol and estrogen conjugate concentrations were positively associated (p less than 0.05) with follicular activity, urinary estrogen conjugate concentrations best reflected ovarian follicular dynamics (p less than 0.001). Daily FSH concentrations in plasma were not correlated with follicular activity. LH concentrations in plasma were low in all animals throughout the study, indicating estrogen from developing ovarian follicles does not induce the release of LH. Progesterone values were low during the study, indicating that the llama does not spontaneously ovulate, at least under the conditions of this study. In summary, llamas have overlapping ovarian follicle waves that occur at about 11-day intervals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Sexual behavior, follicular development and ovulation, and concentrations of circulating gonadotropins during the estrous cycle were studied during the summer in 7 jennies. Mean behavioral estrous length was 6.4 +/- 0.6 days (mean +/- SEM, n=19; 5.6 +/- 0.5 days preovulatory and 0.8 +/- 0.2 days post-ovulatory). Mean diestrous length was 19.3 +/- 0.6 days (n=14). Females in estrus typically showed posturing, mouth clapping, clitoral winking, urinating and tail raising. Mouth clapping began approximately one day sooner and lasted approximately one day longer than winking and tail raising, so that the total duration of clapping was significantly greater than for the other two signs. Follicular changes and concentrations of gonadotropins were determined for 14 estrous cycles (2 per jenny). The follicular end points [diameter of the largest follicle and number of large (>25 mm), medium (20-24 mm), and small follicles (<20 mm)] showed a significant day effect. The diameter of the largest follicle and the number of large follicles began to increase significantly 7 days prior to ovulation with a maximum value the day before ovulation. Medium follicles reached a maximum number 4 days prior to ovulation, and small follicles decreased significantly prior to ovulation. After ovulation, all follicular end points, except the number of small follicles, remained low for the next 12 days. Mean values of FSH were low during estrus and high during diestrus with 2 significant peaks, one 3 days and one 9 days after ovulation. In contrast, mean levels of LH were low during diestrus and high during estrus with a maximum value the day after ovulation. The LH profile showed a more prolonged gradual increase prior to ovulation, than that which has been reported for ponies and horses.  相似文献   

13.
An experiment was carried out on pony mares to establish the time of the oestrous cycle at which ovarian follicles are recruited for ovulation. In one group (n=7), the cycle was interrupted at the preovulatory stage by removing the preovulatory follicle; in another group (n=13) the cycle was interrupted at day 6 of the luteal phase by inducing luteolysis with a prostaglandin injection (PG). In a subgroup (n=7) of those given PG, the ovary not bearing the corpus luteum was removed at the time of injection. A further group (n=6) served as surgical controls. The interval to the next ovulation and blood concentrations of FSH were observed. Anaesthesia alone induced in preovulatory mares was followed by normal ovulation 2.5+/-1 days later. Removal of the preovulatory follicle delayed the next ovulation (14.6+/-2.1 days; P < 0.01). Following PG injection, the interval to ovulation was similar regardless of whether an ovary was removed (12.8+/-4.3 days) or not (10+/-4.1 days). This similarity occurred despite a large and prolonged rise in plasma FSH levels that occurred only in the hemiovariectomized group. In addition, the intervals found after PG injection did not differ from those found after ablation of the preovulatory follicle. These observations indicate that 1) in the presence of the early active corpus luteum or dominant follicle, follicles grow to a similar stage of development; 2) recruitment of the follicle due to ovulation occurs 12 to 14 days before ovulation; 3) limiting new follicular growth to one ovary does not affect the time course to ovulation; and 4) prolonged high FSH levels do not alter the time course or ovulation rate.  相似文献   

14.
A few days after the first follicular wave emerges as 4-mm follicles, follicular deviation occurs wherein 1 follicle of the wave continues to grow (dominant follicle) while the others regress. The objectives of this study were to characterize follicle growth and associated changes in systemic concentrations of gonadotropins and estradiol at 8-h intervals encompassing the time of follicle deviation. Blood samples from heifers (n = 11) were collected and the ovaries scanned by ultrasound every 8 h from 48 h before to 112 h after the maximal value for the preovulatory LH surge. The follicular wave emerged at 5.8 +/- 5.5 h (mean +/- SEM) after the LH surge, and at this time the future dominant follicle (4.2 +/- 0.8 mm) was larger (P < 0.001) than the future largest subordinate follicle (3.6 +/- 0.1 mm). There was no difference in growth rates between the 2 follicles from emergence to the beginning of the deviation (0.5 mm/8 h for each follicle), indicating that, on average, the future dominant follicle maintained a size advantage over the future subordinate follicle. Deviation occurred when the 2 largest follicles were 8.3 +/- 0.2 and 7.8 +/- 0.2 mm in diameter, at 61.0 +/- 3.7 h after wave emergence. Diameter deviation was manifested between 2 adjacent examinations at 8-h intervals. Mean concentrations of FSH decreased, while mean concentrations of LH increased 24 and 32 h before deviation, respectively, and remained constant (no significant differences) for several 8-h intervals encompassing deviation. In addition to the increase and decrease in circulating estradiol concentrations associated with the preovulatory LH surge, an increase (P < 0.05) occurred between the beginning of deviation and 32 h after deviation. The results supported the hypotheses that deviation occurs rapidly (within 8 h), that elevated systemic LH concentrations are present during deviation, and that deviation is not preceded by an increase in systemic estradiol.  相似文献   

15.
Ultrasound-guided follicular aspiration was performed on 29 Holstein-Friesian cows/heifers twice weekly at 3- to 4-d intervals over a period of 2 consecutive estrous cycles (total 42 d). For visualization of the ovaries and guidance of the aspiration needle, a 6.5 MHz fingertip probe on a 62 cm probe carrier was inserted into the vagina. The disposable aspiration needle was connected to a permanent rinse tubing system, thus ensuring minimum death of oocytes in the aspiration processs. After penetration of the vaginal wall, the needle was inserted into a follicle of the rectally fixed ovary. Cumulus oocyte complexes (COC) were aspirated at a pressure of 100 mm Hg. In the first experiment, the effect of an additional gonadotropin treatment 4 d prior to aspiration was investigated in 8 lactating cows. Following FSH-treatment, the number of aspirated follicles was higher (P < 0.05) than in the nontreated animals (10.6 +/- 0.7 vs 8.9 +/- 0.5). The number of recovered COC (7.0 +/- 0.6 vs 5.8 +/- 0.5), the recovery rate (COC per aspirated follicle) (66.6% vs 65.4%), the percentage of viable COC (56.8% vs 52.1%), the cleavage rate upon in vitro maturation and in vitro fertilization (56.7% vs 59.8%) as well as the rate of morula/blastocyst formation (3.8% vs 2.9%) were similar in both groups. In the second experiment, follicles were aspirated in 4 lactating cows, 6 dry cows, 4 pregnant cows (first 35 d of pregnancy), and 4 heifers. The average number of aspirated follicles and recovered COC was higher (P < 0.05) in the first 2 groups (10.6 +/- 0.6 and 9.3 +/- 0.7 follicles; 7.2 +/- 0.5 and 6.9 +/- 0.7 oocytes) than in trie 2 other treatment groups (7.3 +/- 0.5 and 8.1 +/- 0.5 follicles; 5.0 +/- 0.4 and 5.7 +/- 0.5 oocytes). The percentage of viable COC was higher (P < 0.05; 68.3%) in lactating animals than in all the other groups (49.7, 52.5 and 57.4%, respectively). Similarly, upon in vitro fertilization, cleavage rate was higher (P < 0.05; 63.4%) in lactating cows than in the other groups (43.7, 50.5, 55.1%, respectively). A total of 21.5, 22.7, 11.9 and 13.5%, respectively, in the 4 groups of the in vitro fertilized oocytes reached the morula and blastocyst stages. After transfer of a total of 48 embryos 22 pregnancies (45.8%) were established as detected on Day 65. We conclude that 1) repeated aspiration of viable COC at short intervals is possible, 2) additional FSH-treatment does not increase oocyte yields, and 3) viable blastocysts can be produced from cattle at various reproductive phases irrespective of the reproductive phase.  相似文献   

16.
Most estrous cycles in cows consist of 2 or 3 waves of follicular activity. Waves of ovarian follicular development comprise the growth of dominant follicles some of which become ovulatory and the others are anovulatory. Ovarian follicular activity in cows during estrous cycle was studied with a special reference to follicular waves and the circulating concentrations of estradiol and progesterone. Transrectal ultrasound examination was carried out during 14 interovulatory intervals in 7 cows. Ovarian follicular activity was recorded together with assessment of serum estradiol and progesterone concentrations. Three-wave versus two-wave interovulatory intervals was observed in 71.4% of cows. The 3-wave interovulatory intervals differed from 2-wave intervals in: 1) earlier emergence of the dominant follicles, 2) longer in length, and 3) shorter interval from emergence to ovulation. There was a progressive increase in follicular size and estradiol production during growth phase of each wave. A drop in estradiol concentration was observed during the static phase of dominant anovulatory follicles. The size of the ovulatory follicle was always greater and produced higher estradiol compared with the anovulatory follicle. In conclusion, there was a predominance of 3-wave follicular activity that was associated with an increase in length of interovulatory intervals. A dominant anovulatory follicle during its static phase may initiate the emergence of a subsequent wave. Follicular size and estradiol concentration may have an important role in controlling follicular development and in determining whether an estrous cycle will have 2 or 3-waves.  相似文献   

17.
Changes in follicular fluid (FF) concentrations of estradiol, inhibin forms, and insulin-like growth factor binding proteins (IGFBPs), percentage of apoptotic granulosa cells (%A), and follicular size for individual follicles in a growing cohort were determined throughout the first wave of follicular development during the bovine estrous cycle and related to FSH decline. Four groups of heifers (n = 31) were ovariectomized between Days 1.5 and 4.5 of the estrous cycle at 5 +/- 1, 33 +/- 2, 53 +/- 1, and 84 +/- 2 h after the periovulatory peak in FSH concentrations. Follicles > or = 2.5 mm were dissected, measured, and FF aspirated. The five largest follicles were ranked based on their diameter (F1 to F5). Diameters of F1 to F5 were positively correlated with interval from FSH peak (r > or = 0.6, P < 0.05). Five hours after the FSH peak, follicular diameter and FF concentrations of estradiol, inhibins, and IGFBPs were similar for F1 to F5. From 5 to 33 h, amounts of the six precursor inhibin forms (> or = 48 kDa) increased (P < 0.05) in F1 follicles. The IGFBPs in F1 follicles remained low at all time periods. At 33 h, amounts of IGFBP-4 and -5 were higher (P < 0.05) in F4 and F5 compared with F1 follicles. At 84 h, IGFBP-2, -4, and -5 were increased (P < 0.05) in F3, F4, and F5 compared with F1. At 5, 33, or 53 h, %A was not different between follicles in any size class. At 84 h %A was increased (P < 0.05) in follicles <6 mm in diameter. However, at that time, %A did not differ between the selected DF and the largest subordinate follicle. For individual heifers, the selected DF at 84 h was largest in size, highest in estradiol, and lowest in IGFBP-2 and -4. The F1 follicle had highest estradiol in 23 of 27 heifers irrespective of stage of the wave and lowest IGFBP-4 in 19 of 21 heifers from 33 h. We concluded that the earliest intrafollicular changes that differentiate a dominant-like follicle from the growing cohort are enhanced capacity to produce estradiol and maintenance of low levels of IGFBPs.  相似文献   

18.
The objective of this study was to evaluate superovulatory programs based on synchronization of follicular waves with GnRH at 2 different stages of the estrous cycle. Sixteen Holstein cows were randomly assigned to 1 of 3 groups and administered GnRH (Cystorelin, 4 ml i.m.) between Days 4 and 7 (Groups 1 and 3) or between Days 15 and 18 (Group 2) of the estrous cycle (estrus = Day 0). Four days after GnRH treatment, > or = 7-mm follicles were punctured in Groups 1 (n = 6) and 2 (n = 6) or were left intact in Group 3 (n = 4). All cows were superstimulated 2 d later (i.e., from Days 6 to 10 after GnRH treatment) with a total of 400 mg NIH-FSH (Folltropin-V) given twice daily in decreasing doses. The GnRH treatment caused a rapid disappearance of large follicles (P < 0.005), rapid decrease in estradiol concentrations (P < 0.003), and increase in the number of recruitable follicles (4 to 6 mm; P < 0.04), indicative of the emergence of a new follicular wave within 3 to 4 d of treatment. Between 4 and 6 d after GnRH treatment, the mean number of 4- to 6-mm follicles decreased (4.7 +/- 1.8 to 1.5 +/- 3.3) in the nonpunctured group but increased (3.9 +/- 1.0 to 7.3 +/- 1.9) in the punctured group of cows (P < 0.05). In response to FSH treatment, the increase in the number of > or = 7-mm follicles was delayed by approximately 2 d in the nonpunctured group (P < 0.006). Moreover, the mean number of > or = 7-mm follicles at estrus was higher (16.9 +/- 1.7 vs 11.5 +/- 3.0; P < 0.1) in the punctured than the nonpunctured group. The increase in progesterone concentration after estrus was delayed in the nonpunctured group (P < 0.1) compared with the punctured follicles. Mean numbers of CL as well as freezable (Grade 1 and 2) and transferable (Grade 1, 2 and 3) embryos were similar (P > 0.1) in punctured and nonpunctured groups. Spontaneous estrus did not occur prior to cloprostenol-induced luteolysis in any group, and stage of the estrous cycle during which GnRH was given did not affect (P > 0.1) hormonal and follicular responses in the punctured groups. In conclusion, GnRH given at different stages of the estrous cycle promotes the emergence of a follicular wave at a predictable time. Puncture of the newly formed dominant follicle increases the number of recruitable follicles (4 to 6 mm) 2 d later and, in response to superstimulation with FSH, causes a greater number and faster entry of recruitable follicles into larger classes (> or = 7 mm) and a faster postovulatory increase in progesterone concentrations.  相似文献   

19.
The objective was to determine the pattern of IGFBP-2, -3 and -4 gene expression and follicular fluid concentrations of IGFBP-2, -3, -4 and -5 during emergence, selection and dominance of the first follicle wave of the estrous cycle in cattle and during exogenous steroid treatment. Heifers (n = 35) were ovariectomized at 36 (n = 7), 66 (n = 8), 84 (n = 12) and 108 (n = 8) h after the onset of estrus. Heifers in the 84 h ovariectomy group were sub-divided to receive either no treatment (n = 6) or were treated with a progesterone-releasing intravaginal device (n = 6, PRID) and 0.75 mg estradiol benzoate i.m. at the approximate time of ovulation, 30 h post estrus until ovariectomy. Within heifers the four largest follicles recovered following ovariectomy were ranked on size (F1, F2, F3 and F4). At 36 h IGFBP gene expression and follicular fluid IGFBP concentrations were similar in all follicles (F1-F4). Mean diameter of the F1 follicle increased (P < 0.05) between 36 and 84 h with no difference between 84 and 108 h. The F1 follicle had the highest (P < 0.05) concentration of estradiol compared with the F2, F3 and F4 at 84 and 108 h. There was no granulosa cell IGFBP-2 mRNA in F1 follicles at 84 or 108 h. Intrafolliclar IGFBP-2 concentrations were lower (P < 0.05) in the F1 compared with F3 and F4 follicles at 108 h. There was no difference in theca cell IGFBP-4 mRNA expression at 108h, but amounts of follicular fluid IGFBP-4 were lower (P < 0.05) in F1 follicles compared with F3 and F4 follicles at 108 h. IGFBP-3 mRNA was localized in the theca layer of all follicles examined with no difference in expression or follicular fluid concentrations during emergence, selection and dominance of the first follicle wave. IGFBP-5 concentrations were higher (P < 0.05) in follicular fluid of F3 follicles at 108 h compared with the F3 at 36 h. In conclusion follicular dominance was associated with low or decreased follicular fluid concentrations of IGFBP-4 and -5, increased estradiol and differential regulation of IGFBP production.  相似文献   

20.
Transrectal ovarian ultrasonographic studies have shown that, in cattle, follicular wave emergence is associated with a large increase in the number of small antral follicles (4-6mm in diameter); an analogous association has not been found for small follicles (2-3mm in diameter) in the ewe. In previous studies in ewes, accurate assessment of the number of follicles has been limited to follicles > or =2 or 3mm in size. Newer, high-resolution equipment allowed us to identify follicles > or =0.4mm and to quantify all antral follicles > or =1mm in diameter in seven cyclic Western White Face ewes. This allowed us to expand the small follicle pool examined, from 1 to 4 follicles/day (2-3.5mm in diameter) in earlier studies, to 8-18 follicles/day (1-3mm in diameter). Total number of small follicles (> or =1 and < or =3mm in diameter) increased between Days -1 and 0 (Day 0=day of ovulation), and declined between Days 1 and 3 (P<0.05). There were no significant changes in the number of small or medium (4mm in diameter) follicles around days of follicle wave emergence (+/-2 days). The 1-3 follicles in the 2-3mm size range, which constituted a follicle wave (i.e. grew to > or =5mm in size before regression or ovulation), were the only small follicles to emerge in an orderly succession during the estrous cycle, approximately every 3-5 days. Thus, unlike in cattle, there is no apparent increase in numbers of small follicles at follicle wave emergence in cyclic sheep, and little evidence for selection of recruited follicles and follicular dominance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号