首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J H Waterborg 《Biochemistry》1992,31(27):6211-6219
Radioactive acetylation in vivo of plant histone H4 of alfalfa, Arabidopsis, tobacco, and carrot revealed five distinct forms of radioactive, acetylated histone. In histone H4 of eukaryotes ranging from fungi to man, acetylation is restricted to four lysines (residues 5, 8, 12, and 16) possibly caused by a quantitative methylation of lysine-20. Chemical and proteolytic fragmentation of the amino terminally blocked alfalfa H4 protein, dynamically acetylated by radioactive acetate in vivo, allowed protein sequencing and identification of selected peptides. Peptide identification was facilitated by analyzing fully characterized calf histone H4 in parallel. Acetylation in vivo of alfalfa histone H4 was restricted to the lysines in the amino-terminal domain of the protein, residues 1-23. Lysine-20 was shown to be free of methylation, as in pea histone H4. This apparently makes lysine-20 accessible as a novel target for histone acetylation. The in vivo pattern of lysine acetylation (16 greater than 12 greater than 8 greater than or equal to 5 = 20) revealed a preference for lysines -16 and -12 without an apparent strict sequential specificity of acetylation.  相似文献   

2.
3.
4.
5.
Poux AN  Marmorstein R 《Biochemistry》2003,42(49):14366-14374
Histone acetyltransferase (HAT) proteins often exhibit a high degree of specificity for lysine-bearing protein substrates. We have previously reported on the structure of the Tetrahymena Gcn5 HAT protein (tGcn5) bound to its preferred histone H3 substrate, revealing the mode of substrate binding by the Gcn5/PCAF family of HAT proteins. Interestingly, the Gcn5/PCAF HAT family has a remarkable ability to acetylate lysine residues within diverse cognate sites such as those found around lysines 14, 8, and 320 of histones H3, H4, and p53, respectively. To investigate the molecular basis for this, we now report on the crystal structures of tGcn5 bound to 19-residue histone H4 and p53 peptides. A comparison of these structures with tGcn5 bound to histone H3 reveals that the Gcn5/PCAF HATs can accommodate divergent substrates by utilizing analogous interactions with the lysine target and two C-terminal residues with a related chemical nature, suggesting that these interactions play a general role in Gcn5/PCAF substrate binding selectivity. In contrast, while the histone H3 complex shows extensive interactions with tGcn5 and peptide residues N-terminal to the target lysine, the corresponding residues in histone H4 and p53 are disordered, suggesting that the N-terminal substrate region plays an important role in the enhanced affinity of the Gcn5/PCAF HAT proteins for histone H3. Together, these studies provide a framework for understanding the substrate selectivity of HAT proteins.  相似文献   

6.
During nucleosome assembly in vivo, newly synthesized histone H4 is specifically diacetylated on lysines 5 and 12 within the H4 NH(2)-terminal tail domain. The highly conserved "K5/K12" deposition pattern of acetylation is thought to be generated by the Hat1 histone acetyltransferase, which in vivo is found in the HAT-B complex. In the following report, the activity and substrate specificity of the human HAT-B complex and of recombinant yeast Hat1p have been examined, using synthetic H4 NH(2)-terminal peptides as substrates. As expected, the unacetylated H4 peptide was a good substrate for acetylation by yeast Hat1p and human HAT-B, while the K5/K12-diacetylated peptide was not significantly acetylated. Notably, an H4 peptide previously diacetylated on lysines 8 and 16 was a very poor substrate for acetylation by either yeast Hat1p or human HAT-B. Treating the K8/K16-diacetylated peptide with histone deacetylase prior to the HAT-B reaction raised acetylation at K5/K12 to 70-80% of control levels. These results present strong support for the model of H4-Hat1p interaction proposed by Dutnall et al. (Dutnall, R. N., Tafrov, S. T., Sternglanz, R., and Ramakrishnan, V. (1998) Cell 94, 427-438) and provide evidence for the first time that site-specific acetylation of histones can regulate the acetylation of other substrate sites.  相似文献   

7.
Antibodies to histone deacetylases (HDACs) have been used to immuno-isolate deacetylase complexes from HeLa cell extracts. Complexes shown to contain HDAC1, HDAC3, HDAC6, and HDAC1+2 as their catalytic subunits have been used in an antibody-based assay that detects deacetylation of whole histones at defined lysines. The class II deacetylase HDAC6 was inactive in this assay, but the three class I enzymes deacetylated all histone lysines tested, although with varying efficiency. In comparison to HDAC1, HDAC3 preferentially deacetylated lysines 5 and 12 of H4 and lysine 5 of H2A. H4 tails in purified mononucleosomes were refractory to deacetylation by both HDAC1 and HDAC3, unless ATP was added to the reaction mix. Surprisingly, ATP also consistently enhanced cleavage of free, non-nucleosomal histones, but not small peptides, by both enzyme complexes. We found no evidence that ATP operates by phosphorylation of components of the HDAC complex, but have shown that HDACs 1, 2, and 3 all co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. Another common ATP-dependent chaperone, Hsp90, was absent from all HDAC complexes tested, whereas Hsp60 associated with HDAC1 only. We suggest that Hsp chaperone proteins enhance the deacetylase activity of HDAC complexes by ATP-dependent manipulation of protein substrates.  相似文献   

8.
9.
Folding of DNA into chromatin is mediated by binding to histones such as H4; association of DNA with histones is regulated by covalent histone modifications, e.g. acetylation, methylation, and biotinylation. We sought to identify amino-acid residues that are biotinylated in histone H4, and to determine whether acetylation and methylation of histones affect biotinylation. Synthetic peptides spanning fragments of human histone H4 were biotinylated enzymatically using biotinidase. Peptide-bound biotin was probed with streptavidin-peroxidase. Peptides based on the N-terminal sequence of histone H4 were effectively recognized by biotinidase as substrates for biotinylation; in contrast, peptides based on the C-terminal sequences were not biotinylated. Substitution of K8 or K12 with alanine or arginine decreased biotinylation, suggesting that these lysines are targets for biotinylation; K8 and K12 are also known targets for acetylation. Chemical acetylation or methylation of a given lysine decreased subsequent enzymatic biotinylation of neighboring lysines, consistent with cross-talk among histone modifications. Substitution of a given lysine (positive charge) with glutamate (negative charge) abolished biotinylation of neighboring lysines, providing evidence that the net charge of histones has a role in biotinylation. An antibody was generated that specifically recognized histone H4 biotinylated at K12. This antibody was used to detect biotinylated histone H4 in nuclear extracts from human cells. These studies suggest that K8 and K12 in histone H4 are targets for biotinylation, that acetylation and biotinylation compete for the same binding sites, and that acetylation and methylation of histones affect biotinylation of neighboring lysines.  相似文献   

10.
Histones are modified post-translationally, e.g. by methylation of lysine and arginine residues, and by phosphorylation of serine residues. These modifications regulate processes such as gene expression, DNA repair, and mitosis and meiosis. Recently, evidence has been provided that histones are also modified by covalent binding of the vitamin biotin. The aims of this study were to identify biotinylation sites in histone H3, and to investigate the crosstalk among histone biotinylation, methylation and phosphorylation. Synthetic peptides based on the sequence of human histone H3 were used as substrates for enzymatic biotinylation by biotinidase; biotin in peptides was probed using streptavidin peroxidase. These studies provided evidence that K4, K9 and K18 in histone H3 are good targets for biotinylation; K14 and K23 are relatively poor targets. Antibodies were generated to histone H3, biotinylated either at K4, K9 or K18. These antibodies localized to nuclei in human placental cells in immunocytochemistry and immunoblotting experiments, suggesting that lysines in histone H3 are biotinylated in vivo. Dimethylation of R2, R8 and R17 increased biotinylation of K4, K9 and K18, respectively, by biotinidase; phosphorylation of S10 abolished biotinylation of K9. These observations are consistent with crosstalk between biotinylation of histones and other known modifications of histones. We speculate that this crosstalk provides a link to known roles for biotin in gene expression and cell proliferation.  相似文献   

11.
12.
13.
BACKGROUND: Centromeric domains often consist of repetitive elements that are assembled in specialized chromatin, characterized by hypoacetylation of histones H3 and H4 and methylation of lysine 9 of histone H3 (K9-MeH3). Perturbation of this underacetylated state by transient treatment with histone deacetylase inhibitors leads to defective centromere function, correlating with delocalization of the heterochromatin protein Swi6/HP1. Likewise, deletion of the K9-MeH3 methyltransferase Clr4/Suvar39 causes defective chromosome segregation. Here, we create fission yeast strains retaining one histone H3 and H4 gene; the creation of these strains allows mutation of specific N-terminal tail residues and their role in centromeric silencing and chromosome stability to be investigated. RESULTS: Reduction of H3/H4 gene dosage to one-third does not affect cell viability or heterochromatin formation. Mutation of lysines 9 or 14 or serine 10 within the amino terminus of histone H3 impairs centromere function, leading to defective chromosome segregation and Swi6 delocalization. Surprisingly, silent centromeric chromatin does not require the conserved lysine 8 and 16 residues of histone H4. CONCLUSIONS: To date, mutation of conserved N-terminal residues in endogenous histone genes has only been performed in budding yeast, which lacks the Clr4/Suvar39 histone methyltransferase and Swi6/HP1. We demonstrate the importance of conserved residues within the histone H3 N terminus for the maintenance of centromeric heterochromatin in fission yeast. In sharp contrast, mutation of two conserved lysines within the histone H4 tail has no impact on the integrity of centromeric heterochromatin. Our data highlight the striking divergence between the histone tail requirements for the fission yeast and budding yeast silencing pathways.  相似文献   

14.
Arnold KM  Lee S  Denu JM 《Biochemistry》2011,50(5):727-737
Esa1, an essential MYST histone acetyltransferase found in the yeast piccolo NuA4 complex (picNuA4), is responsible for genome-wide histone H4 and histone H2A acetylation. picNuA4 uniquely catalyzes the rapid tetra-acetylation of nucleosomal H4, though the molecular determinants driving picNuA4 efficiency and specificity have not been defined. Here, we show through rapid substrate trapping experiments that picNuA4 utilizes a nonprocessive mechanism in which picNuA4 dissociates from the substrate after each acetylation event. Quantitative mass spectral analyses indicate that picNuA4 randomly acetylates free and nucleosomal H4, with a small preference for lysines 5, 8, and 12 over lysine 16. Using a series of 24 histone mutants of H4 and H2A, we investigated the parameters affecting catalytic efficiency. Most strikingly, removal of lysine residues did not substantially affect the ability of picNuA4 to acetylate remaining sites, and insertion of an additional lysine into the H4 tail led to rapid quintuple acetylation. Conversion of the native H2A tail to an H4-like sequence resulted in enhanced multisite acetylation. Collectively, the results suggest picNuA4's site selectivity is dictated by accessibility on the nucleosome surface, the relative proximity from the histone fold domain, and a preference for intervening glycine residues with a minimal (n + 2) spacing between lysines. Functionally distinct from other HAT families, the proposed model for picNuA4 represents a unique mechanism of substrate recognition and multisite acetylation.  相似文献   

15.
16.
The differently acetylated subfractions of histone H4 isolated from cuttlefish testis and from calf thymus were separated by ion exchange chromatography on sulfopropyl-Sephadex, using a shallow linear gradient of guanidine hydrochloride in the presence of 6 M urea at pH 3.0. The tetra-, tri-, di-, mono-, and nonacetylated forms of cuttlefish H4 represent 2, 6.4, 18, 32.2, and 41.4% of the whole histone, respectively. The di-, mono-, and nonacetylated forms of calf H4 represent 11.7, 41.3, and 44% of the whole histone, respectively. The acetylation sites were determined in each subfraction by identification of the acetylated peptides. In each acetylated H4 subfraction, the acetylated tryptic peptides were identified by peptide mapping and amino acid analysis with reference to the peptide map of nonacetylated H4. In cuttlefish testis H4, lysine 12 is the main site of acetylation in the monoacetylated subfraction; lysines 5 and 12 are found acetylated in diacetylated H4; lysines 5, 12, and 16 are found acetylated in triacetylated H4. From these results and the stoichiometry of the different H4 subfractions, it can be concluded that lysine 5 is acetylated after lysine 12. In calf thymus, lysine 16 is the only site of acetylation in the monoacetylated subfraction. All the diacetylated forms are acetylated in lysine 16, the second site of acetylation being, in decreasing order, lysine 12, lysine 5, or lysine 8. These observations suggest that acetylation occurs in a sequential manner. Moreover, the sites of acetylation depend upon the biological event in which acetylation is involved.  相似文献   

17.
L K Durrin  R K Mann  P S Kayne  M Grunstein 《Cell》1991,65(6):1023-1031
  相似文献   

18.
DEAE-Sepharose chromatography of extracts from Zea mays meristematic cells revealed multiple histone acetyltransferase and histone deacetylase enzyme forms. An improved method for nuclear isolation allowed us to discriminate nuclear and cytoplasmic enzymes. Two nuclear histone acetyltransferases, A1 and A2, a cytoplasmic B-enzyme and two nuclear histone deacetylases, HD1 and HD2, have been identified. The histone specificity of the different enzyme forms has been studied in an in vitro system, using chicken erythrocyte histones as substrate. The cytoplasmic histone acetyltransferase B is the predominant enzyme, which acetylates mainly histone H4 and to a lesser extent H2A. The nuclear histone acetyltransferase A1 preferentially acetylates H3 and also H4, whereas enzyme A2 is specific for H3. This substrate specificity was confirmed with homologous Z. mays histones. The two histone deacetylases differ from each other with respect to ionic strength dependence, inhibition by acetate and butyrate, and substrate specificity. The strong inhibitory effect of acetate on histone deacetylases was exploited to distinguish different histone acetyltransferase forms.  相似文献   

19.
Deciphering the transcriptional histone acetylation code for a human gene   总被引:45,自引:0,他引:45  
Agalioti T  Chen G  Thanos D 《Cell》2002,111(3):381-392
  相似文献   

20.
We previously showed that Arabidopsis thaliana histone acetyltransferase TAF1/HAF2 is required for the light regulation of growth and gene expression, and we show here that histone acetyltransferase GCN5 and histone deacetylase HD1/HDA19 are also involved in such regulation. Mutation of GCN5 resulted in a long-hypocotyl phenotype and reduced light-inducible gene expression, whereas mutation of HD1 induced opposite effects. The double mutant gcn5 hd1 restored a normal photomorphogenic phenotype. By contrast, the double mutant gcn5 taf1 resulted in further loss of light-regulated gene expression. gcn5 reduced acetylation of histones H3 and H4, mostly on the core promoter regions, whereas hd1 increased acetylation on both core and more upstream promoter regions. GCN5 and TAF1 were both required for H3K9, H3K27, and H4K12 acetylation on the target promoters, but H3K14 acetylation was dependent only on GCN5. Interestingly, gcn5 taf1 had a cumulative effect mainly on H3K9 acetylation. On the other hand, hd1 induced increased acetylation on H3K9, H3K27, H4K5, and H4K8. GCN5 was also shown to be directly associated with the light-responsive promoters. These results suggest that acetylation of specific histone Lys residues, regulated by GCN5, TAF1, and HD1, is required for light-regulated gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号