首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During sporulation in Saccharomyces cerevisiae, the four haploid nuclei are encapsulated within multilayered spore walls. Glucan, the major constituent of the spore wall, is synthesized by 1,3-beta-glucan synthase, which is composed of a putative catalytic subunit encoded by FKS1 and FKS2. Although another homolog, encoded by FKS3, was identified by homology searching, its function is unknown. In this report, we show that FKS2 and FKS3 are required for spore wall assembly. The ascospores of fks2 and fks3 mutants were enveloped by an abnormal spore wall with reduced resistance to diethyl ether, elevated temperatures, and ethanol. However, deletion of the FKS1 gene did not result in a defective spore wall. The construction of fusion genes that expressed Fks1p and Fks2p under the control of the FKS2 promoter revealed that asci transformed with FKS2p-driven Fks1p and Fks2p were resistant to elevated temperatures, which suggests that the expression of FKS2 plays an important role in spore wall assembly. The expression of FKS1p-driven Fks3p during vegetative growth did not affect 1,3-beta-glucan synthase activity in vitro but effectively suppressed the growth defect of the temperature-sensitive fks1 mutant by stabilizing Rho1p, which is a regulatory subunit of glucan synthase. Based on these results, we propose that FKS2 encodes the primary 1,3-beta-glucan synthase in sporulation and that FKS3 is required for normal spore wall formation because it affects the upstream regulation of 1,3-beta-glucan synthase.  相似文献   

2.
The eukaryotic glyoxylate cycle has been previously hypothesized to occur in the peroxisomal compartment, which in the yeast Saccharomyces cerevisiae additionally represents the sole site for fatty acid beta-oxidation. The subcellular location of the key glyoxylate-cycle enzyme malate synthase 1 (Mls1p), an SKL-terminated protein, was examined in yeast cells grown on different carbon sources. Immunoelectron microscopy in combination with cell fractionation showed that Mls1p was abundant in the peroxisomes of cells grown on oleic acid, whereas in ethanol-grown cells Mls1p was primarily cytosolic. This was reinforced using a green fluorescent protein (GFP)-Mls1p reporter, which entered peroxisomes solely in cells grown under oleic acid-medium conditions. Although growth of cells devoid of Mls1p on ethanol or acetate could be fully restored using a cytosolic Mls1p devoid of SKL, this construct could only partially alleviate the requirement for native Mls1p in cells grown on oleic acid. The combined results indicated that Mls1p remained in the cytosol of cells grown on ethanol, and that targeting of Mls1p to the peroxisomes was advantageous to cells grown on oleic acid as a sole carbon source.  相似文献   

3.
D-Arabinono-1,4-lactone oxidase catalysing the final step of D-erythroascorbic acid biosynthesis was purified from the mitochondrial fraction of Saccharomyces cerevisiae. Based on the amino acid sequence analysis of the enzyme, an unknown open reading frame (ORF), YML086C, was identified as the ALO1 gene encoding the enzyme. The ORF of ALO1 encoded a polypeptide consisting of 526 amino acids with a calculated molecular mass of 59493Da. The deduced amino acid sequence of the enzyme shared 32% and 21% identity with that of L-gulono-1,4-lactone oxidase from rat and L-galactono-1,4-lactone dehydrogenase from cauliflower, respectively, and contained a putative transmembrane segment and a covalent FAD binding site. Blot hybridization analyses showed that a single copy of the gene was present in the yeast genome and that mRNA of the ALO1 gene was 1.8kb in size. In the alo1 mutants, D-erythroascorbic acid and the activity of D-arabinono-1,4-lactone oxidase could not be detected. The intracellular concentration of D-erythroascorbic acid and the enzyme activity increased up to 6.9-fold and 7.3-fold, respectively, in the transformant cells carrying ALO1 in multicopy plasmid. The alo1 mutants showed increased sensitivity towards oxidative stress, but overexpression of ALO1 made the cells more resistant to oxidative stress.  相似文献   

4.
Gut2, the mitochondrial glycerol-3-phosphate dehydrogenase, was previously shown to become preferentially labelled with photoactivatable phosphatidylcholine (PC), pointing to a functional relation between these molecules. In the present study we analyzed whether Gut2 functioning depends on the PC content of yeast cells, using PC biosynthetic mutants in which the PC content was lowered. PC depletion was found to reduce growth on glycerol and to increase glycerol excretion, both indicating that PC is needed for optimal Gut2 functioning in vivo. Using several in vitro approaches the nature of the dependence of Gut2 functioning on cellular PC contents was investigated. The results of these experiments suggest that it is unlikely that the effects observed in vivo are due to changes in cellular Gut2 content, in specific activity of Gut2 in isolated mitochondria, or in the membrane association of Gut2, upon lowering the PC level. The in vivo effects are more likely an indirect result of PC depletion-induced changes in the cellular context in which Gut2 functions, that are not manifested in the in vitro systems used.  相似文献   

5.
Glycogen is a storage form of glucose utilized as an energy reserve by many organisms. Glycogen synthase, which is essential for synthesizing this glucose polymer, is regulated by both covalent phosphorylation and the concentration of glucose-6-P. With the yeast glycogen synthase Gsy2p, we recently identified two mutants, R579A/R580A/R582A [corrected] and R586A/R588A/R591A, in which multiple arginine residues were mutated to alanine that were completely insensitive to activation by glucose-6-P in vitro (Pederson, B. A., Cheng, C., Wilson, W. A., and Roach, P. J. (2000) J. Biol. Chem. 275, 27753-27761). We report here the expression of these mutants in Saccharomyces cerevisiae and, as expected from our findings in vitro, they were not activated by glucose-6-P. The R579A/R580A/R582A [corrected] mutant, which is also resistant to inhibition by phosphorylation, caused hyperaccumulation of glycogen. In contrast, the mutant R586A/R588A/R591A, which retains the ability to be inactivated by phosphorylation, resulted in lower glycogen accumulation when compared with wild-type cells. When intracellular glucose-6-P levels were increased by mutating the PFK2 gene, glycogen storage due to the wild-type enzyme was increased, whereas that associated with R579A/R580A/R582A [corrected] was not greatly changed. This is the first direct demonstration that activation of glycogen synthase by glucose-6-P in vivo is necessary for normal glycogen accumulation.  相似文献   

6.
B Distel  M Veenhuis    H F Tabak 《The EMBO journal》1987,6(10):3111-3116
Saccharomyces cerevisiae is unable to grow on methanol because it lacks the enzymes required for its metabolism. To study the possibility of whether or not the methanol oxidation pathway of Hansenula polymorpha can be transferred to S. cerevisiae, the gene coding for alcohol oxidase, a peroxisomal homo-octameric flavoprotein, was introduced into S. cerevisiae. Transformed cells contain varying amounts of alcohol oxidase depending on the plasmid used. Immunocytochemical experiments indicate that the protein is imported into peroxisomes, whether organelle proliferation is induced or not. Cells lack alcohol oxidase activity however, and only the monomeric, non-functional, form of the protein is found. These findings indicate that the H. polymorpha peroxisomal targeting signal of alcohol oxidase is recognized in S. cerevisiae and protein monomers are imported.  相似文献   

7.
8.
Peroxisomes undergo rapid, selective autophagic degradation (pexophagy) when the metabolic pathways they contain are no longer required for cellular metabolism. Pex3 is central to the formation of peroxisomes and their segregation because it recruits factors specific for these functions. Here, we describe a novel Saccharomyces cerevisiae protein that interacts with Pex3 at the peroxisomal membrane. We name this protein Atg36 as its absence blocks pexophagy, and its overexpression induces pexophagy. We have isolated pex3 alleles blocked specifically in pexophagy that cannot recruit Atg36 to peroxisomes. Atg36 is recruited to mitochondria if Pex3 is redirected there, where it restores mitophagy in cells lacking the mitophagy receptor Atg32. Furthermore, Atg36 binds Atg8 and the adaptor Atg11 that links receptors for selective types of autophagy to the core autophagy machinery. Atg36 delivers peroxisomes to the preautophagosomal structure before being internalised into the vacuole with peroxisomes. We conclude that Pex3 recruits the pexophagy receptor Atg36. This reinforces the pivotal role played by Pex3 in coordinating the size of the peroxisome pool, and establishes its role in pexophagy in S. cerevisiae.  相似文献   

9.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the α subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 μM, whereas the IC50 value was 15 μM for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly → Ser) in the α subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   

10.
Taking into account published contradictory results concerning the regulation of fatty acid synthase (Fas) by H(2)O(2), we carried out a systematic study where two methods of H(2)O(2) delivery (steady-state and bolus addition) and the effect of a wide range of H(2)O(2) concentrations were investigated. A decrease in Fas activity was observed for cells exposed to 100 and 150μM H(2)O(2) in a steady-state, while a bolus addition of the same H(2)O(2) concentrations did not alter Fas activity. Similar results were observed for the mRNA levels of FAS1, the gene that encodes Fas subunit β. However, the exposure to a steady-state 50μM H(2)O(2) dose lead to an increase in FAS1 mRNA levels, showing a biphasic modulation of Fas by H(2)O(2). The results obtained emphasize that cellular effects of H(2)O(2) can vary over a narrow range of concentrations. Therefore, a tight control of H(2)O(2) exposure, which can be achieved by exposing H(2)O(2) in a steady-state, is important for cellular studies of H(2)O(2)-dependent redox regulation.  相似文献   

11.
12.
Characterization of methylglyoxal synthase in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Methylglyoxal synthase in Saccharomyces cerevisiae was purified approximately 300 folds from cell extracts with 20% of activity yield. During purification procedures, polymorphic behaviours of the enzyme were observed. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis and consisted of a single polypeptide chain of Mr = 26,000. The enzyme was most active at pH 9.5-10.5 and strictly specific to dihydroxyacetone phosphate with Km = 3 mM. Phosphoenolpyruvate, glyceraldehyde-3-phosphate, orthophosphate and thiol compounds were potent inhibitors of the enzyme.  相似文献   

13.
Although peroxisomes are difficult to identify in Saccharomyces cerevisiae under ordinary growth conditions, they proliferate when cells are cultured on oleic acid. We used this finding to study the protein composition of these organelles in detail. Peroxisomes from oleic acid-grown cells were purified on a discontinuous sucrose gradient; they migrated to the 46 to 50% (wt/wt) sucrose interface. The peroxisomal fraction was identified morphologically and by the presence of all of the enzymes of the peroxisomal beta-oxidation pathway. These organelles also contained a significant but minor fraction of two enzymes of the glyoxylate pathway, malate synthase and malate dehydrogenase-2. The localization of malate synthase in peroxisomes was confirmed by immunoelectron microscopy. It is postulated that glyoxylate pathway enzymes are readily and preferentially released from peroxisomes upon cell lysis, accounting for their incomplete recovery from isolated organelles. Small uninduced peroxisomes from glycerol-grown cultures were detected on sucrose gradients by marker enzymes. Under these conditions, catalase, acyl-coenzyme A oxidase, and malate synthase cofractionated at equilibrium close to the mitochondrial peak, indicating smaller, less dense organelles than those from cells grown on oleic acid. Peroxisomal membranes from oleate cultures were purified by buoyant density centrifugation. Three abundant proteins of 24, 31, and 32 kilodaltons were observed.  相似文献   

14.
Limited proteolysis of intact yeast methionine aminopeptidase (MAP1) with trypsin releases a 34 kDa fragment whose NH2-terminal sequence begins at Asp70, immediately following Lys69. These results suggest that yeast MAP may have a two-domain structure consisting of an NH2-terminal zinc finger domain and a C-terminal catalytic domain. To test this, a mutant MAP lacking residues 2–69 was generated, overexpressed, purified and analyzed. Metal ion analyses indicate that 1 mol of wild-type yeast MAP contains 2 mol of zinc ions and at least 1 mol of cobalt ion, whereas 1 mol of the truncated MAP lacking the putative zinc fingers contains only a trace amount of zinc ions but still contains one mole of cobalt ion. These results suggest that the two zinc ions observed in the native yeast MAP are located at the Cys/His rich region and the cobalt ion is located in the catalytic domain. The k.at and Km values of the purified truncated MAP are similar to those of the wild-type MAP when measured with peptide substrates in vitro and it appears to be as active as the wild-type MAP in vivo. However, the truncated MAP is significantly less effective in rescuing the slow growth phenotype of map mutant than the wild-type MAP. These findings suggest that the zinc fingers are essential for normal MAP function in vivo, even though the in vitro enzyme assays indicate that they are not involved in catalysis. In addition, a series of single mutations were generated by changing the cysteines and the histidines in the zinc finger region to serines and arginines, respectively. Analyses of these point mutations provide further evidence that the cysteines and histidines are important for the growth promotion function of yeast MAP.  相似文献   

15.
16.
Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Pex7p is the soluble receptor responsible for importing into peroxisomes newly synthesized proteins bearing a type 2 peroxisomal targeting sequence. We observe that appending GFP to Pex7p's COOH terminus shifts Pex7p's intracellular distribution from predominantly cytosolic to predominantly peroxisomal in Saccharomyces cerevisiae. Cleavage of the link between Pex7p and GFP within peroxisomes liberates GFP, which remains inside the organelle, and Pex7p, which exits to the cytosol. The reexported Pex7p is functional, resulting in import of thiolase into peroxisomes and improved growth of the yeast on oleic acid. These results support the "extended shuttle" model of peroxisome import receptor function and open the way to future studies of receptor export.  相似文献   

17.
The activity of chitin synthase extracted from whole cells of Saccharomyces cerevisiae shows reproducible changes during the course of batch cultivation. During exponential growth 5–10% of the enzyme occurs in the active form, whereas in the stationary phase no active enzyme can be detected. Of three yeast proteinases, A, B and C, only B is able to activate pre-chitin synthase and inactivate chitin synthase. A new model of the regulation is presented which accounts for the specific location as well as for termination of chitin synthesis during the budding cycle.These results were reported at the 4th International Symposium on Yeasts in Vienna, July 1974, and are part of doctoral thesis by A.H., University Freiburg (1974).  相似文献   

18.
Inactivation of chitin synthase in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
  相似文献   

19.
 Sporulation in the yeast Saccharomyces cerevisiae is a meiotic developmental process that occurs in MAT a/MATα heterozygotes in response to nutrient deprivation. Here, the fate and role of peroxisomes during sporulation and germination has been examined by a combination of immunoelectron microscopy and the use of pex mutants defective in peroxisomal functions. Using a green fluorescent protein probe targeted to peroxisomes we show that peroxisomes are inherited through meiosis and that they do not increase in number either during sporulation or spore germination. In addition, there is no requirement for peroxisome degradation prior to spore packaging. Unlike the situation in filamentous fungi, peroxisomes do not proliferate during the yeast life cycle. Functional peroxisomes are dispensable for efficient meiotic development on acetate medium since homozygous Δpex6 diploids sporulated well and produced mature spores that were resistant to diethyl ether. Like haploids, diploid cells can proliferate their peroxisomes in response to oleate as sole carbon source in liquid medium, but under these conditions they do not sporulate. On solid oleate medium, homozygous pex5,Δpex6, and pex7 cells were unable to sporulate efficiently, whereas the wild type was. The results presented here are discussed in terms of the transmission of organelles to progeny cells. Accepted: 19 December 1997  相似文献   

20.
Membrane-associated cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):L-serine O-phosphatidyltransferase (phosphatidylserine synthase, EC2.7.8.8.) and CDP-diacylglycerol:myo-inositol phosphatidyltransferase (phosphatidylinositol synthase, EC 2.7.8.11) were solubilized from the microsomal fraction of Saccharomyces cerevisiae. A variety of detergents were examined for their ability to release phosphatidylserine synthase and phosphatidylinositol synthase activities from the microsome fraction. Both enzymes were solubilized from the microsome fraction with Renex 690 in yield over 80% with increase to specific activity of 1.6-fold. Both solubilized enzymatic activities were dependent on manganese ions and Triton X-100 for maximum activity. The pH optimum for each reaction was 8.0. The apparent Km values for CDP-diacylglycerol and serine for the phosphatidylserine synthase reaction were 0.1 and 0.25 mM, respectively. The apparent Km values for CDP-diacylglycerol and inositol for the phosphatidylinositol synthase reaction were 70 microM and 0.1 mM, respectively. Thioreactive agents inhibited both enzymatic activities. Both solubilized enzymatic activities were thermally inactivated at temperatures above 30 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号