首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Molecular species profiles were determined for both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of mitochondrial and microsomal membrane fractions from liver tissue of thermally-acclimated rainbow trout,Salmo gairdneri. The predominant molecular species of PC were 16:0/22:6, 16:0/18:1, 16:0/20:3 and 16:0/22:5, whereas predominant molecular species of PE were 18:1/20:4, 14:0/16:0, 18:0/22:6 and 18:1/22:6. PE possessed short chain saturates (primarily 14:0/16:0) and monoenes (primarily 14:0/16:1) not present in PC and larger proportions of polyunsaturated (18:0/22:6, 18:0/22:5 and 18:1/22:6. and diunsaturated molecular species than PC. Differences between membrane fractions were most evident in warm (20°C)-acclimated trout. Mitochondria contained higher proportions of long-chain, polyunsaturated molecular species of PE, but less of the corresponding species of PC than other membrane fractions. Rankings based on unsaturation index were accordingly: mitochondria heavy microsomes>light microsomes for PE, but heavy microsomes>light microsomes>-mitochondria for PC. Mitochondria were notable for high proportions of diunsaturated molecular species of both phosphatides. Growth at cold temperatures (5°C) was generally associated with a replacement of shorter chain mono- and dienoic molecular species (16:0/18:1, 16:1/18:1, 14:0/16:2 and 18:1/18:1 in the case of PC and 14:0/16:1, 14:0/16:2 and 16:1/18:1 for PE), and occasionally saturates, with long-chain, polyunsaturated molecular species (for PC, C36–38: 16:0/22:6, 16:1/22:6, 16:0/20:3 and 16:0/20:5; for PE, C38–40: 18:1/20:4, 16:1/22:6, 18:0/20:5, 18:2/20:4, 18:0/22:5 and 18:0/22:6). However, compositions of mitochondrial PE and PC from heavy microsomes were not significantly influenced by acclimation temperature. The role of phospholipase A2, in addition to other metabolic processes, in mediating these changes is discussed.Abbreviations ACL average chain length - UI unsaturation index  相似文献   

2.
Biswas T  Gupta M  Achari B  Pal BC 《Phytochemistry》2005,66(6):621-626
Seven hopane-type saponins were isolated from the methanol extract of Glinus lotoides. Six of them were identified as novel compounds and designated as lotoideside A [3-O-beta-D-xylopyranosyl (1-->2)-alpha-L-rhamnopyranosyl-6 alpha-O-beta-D-xylopyranosyl-22-beta-O-beta-D-glucopyranosyl-16 beta-hydroxy hopane (1)], lotoideside B [3-O-beta-D-xylopyranosyl (1-->2)-alpha-L-rhamnopyranosyl-22-beta-O-beta-D-glucopyranosyl-6 alpha,16 beta-dihydroxyhopane (2)], lotoideside C [3-OD-xylopyranosyl-6 alpha-O-beta-D-xylopyranosyl-16 beta-O-beta-D-xylopyranosyl-22 beta-hydroxyhopane (3)], lotoideside D [3-O-beta-D-xylopyranosyl-16 beta-O-alpha-L-arabinopyranosyl-6 alpha,22-beta-dihydroxyhopane (4)], lotoideside E [3-O-beta-D-xylopyranosyl-6 alpha-O-beta-D-xylopyranosyl-16 beta,22-beta-dihydroxyhopane (5)], and lotoideside F [3-O-beta-D-xylopyranosyl-22-beta-O-beta-D-glucopyranosyl-16 beta-hydroxyhopan-6-one (6)]. The known compound succulentoside B (7) was also encountered. Their structures were elucidated on the basis of one-and two-dimensional NMR spectroscopic techniques, ESIMS and chemical evidences.  相似文献   

3.
Summary The rare fragile site at 16q22 was experimentally induced in lymphocyte cultures with various AT-specific, non-intercalating DNA-ligands. The optimum conditions for the induction of fra (16)(q22) were determined. The best expression of fra (16)(q22) was found with the aromatic diamidine berenil which is recommended for further studies on this fragile site. The results indicate that fra (16)(q22) is a region with AT-rich, late replicating DNA. The simultaneous treatment of lymphocytes with berenil and aphidicolin (inhibitor of DNA polymerase ) induces both the rare fra (16) (q22) and the common fra (16) (q23) within the same chromosome. A population study on 350 unselected individuals showed that fra (16)(q22) is the most common of all rare autosomal fragile sites in man. The frequency of individuals heterozygous for fra (16)(q22) is 5.1% no homozygosity for fra (16) (q22) was detected. Statistical analysis indicates that the population is in Hardy-Weinberg equilibrium with respect to the fragile and non-fragile chromosomes 16.  相似文献   

4.
Summary A family with two independent reciprocal translocations t(3;19) and t(16;22) is described. The proband, a 4-week-old male, was phenotypically conspicious with multiple congenital anomalies. Cytogenetic examination revealed a balanced reciprocal translocation (3;19) and a supernumerary small marker chromosome. His mother carried two balanced reciprocal translocations, the one found in the proband and a reciprocal translocation (16;22). The maternal grandmother and a maternal uncle were identified as carriers of a single translocation (16;22). The findings in the family members permitted the identification of the proband's marker chromosome as a derivative chromosome 22 resulting in partial trisomy 16 and 22.  相似文献   

5.
The lack of physical mapping data strongly restricts the analysis of the meningioma chromosomal region that was assigned to the bands 22q12.3-qter. Recently, we reported a new marker D22S16 for chromosome 22 that was assigned to the region 22q13-qter by in situ hybridization. Utilizing somatic cell hybrids we now sublocalized the marker D22S16 within the band region 22q12–13.1, thus placing it in the vicinity of the gene for the platelet derived growth factor (PDGFB). A physical map was established for the regions surrounding the PDGFB gene and the D22S16 marker. By means of pulsed-field gel electrophoresis (PFGE) D22S16 and PDGFB were found to be physically linked within 900 kb. We also identified two CpG clusters bordering the PDGFB gene. For the enzyme NotI, a variation of the PDGFB restriction pattern was found between different individuals. PFGE analysis of the two loci (PDFGB and D22S16) failed to identify major rearrangements in meningioma.  相似文献   

6.
RBP16 is a guide RNA (gRNA)-binding protein that was shown through immunoprecipitation experiments to interact with ~30% of total gRNAs in Trypanosoma brucei mitochondria. To gain insight into the biochemical function of RBP16, we used affinity chromatography and immunoprecipitation to identify RBP16 protein binding partners. By these methods, RBP16 does not appear to stably interact with the core editing machinery. However, fractionation of mitochondrial extracts on MBP–RBP16 affinity columns consistently isolated proteins of 12, 16, 18 and 22 kDa that were absent from MBP control columns. We describe here our analysis of one RBP16-associated protein, p22. The predicted p22 protein has significant sequence similarity to a family of multimeric, acidic proteins that includes human p32 and Saccharomyces cerevisiae mam33p. Glutaraldehyde crosslinking of recombinant p22 identified homo-multimeric forms of the protein, further substantiating its homology to p32. We confirmed the p22–RBP16 interaction and demonstrated that the two proteins bind each other directly by ELISA utilizing recombinant p22 and RBP16. p32 family members have been reported to modulate viral and cellular pre-mRNA splicing, in some cases by perturbing interaction of their binding partners with RNA. To determine whether p22 similarly affects the gRNA binding properties of RBP16, we titrated recombinant p22 into UV crosslinking assays. These experiments revealed that p22 significantly stimulates the gRNA binding capacity of RBP16. Thus, p22 has the potential to be a regulatory factor in T.brucei mitochondrial gene expression by modulating the RNA binding properties of RBP16.  相似文献   

7.
Seven steroidal glycosides, along with one known glycoside, were isolated from the rhizomes of Ruscus hypophyllum (Liliaceae). Comprehensive spectroscopic analysis, including 2D NMR spectroscopy, and the results of acid hydrolysis allowed the chemical structures of the compounds to be assigned as (23S,25R)-23-hydroxyspirost-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (1), 1beta-hydroxyspirosta-5,25(27)-dien-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (2), (22S)-16beta,22-dihydroxycholest-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (3), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-22-hydroxycholest-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (4), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-22-hydroxycholest-5-en-3beta-yl beta-d-glucopyranoside (5), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-3beta,22-dihydroxycholest-5-en-1beta-yl O-alpha-l-rhamnopyranosyl-(1-->2)-(3,4-di-O-acetyl-beta-d-xylopyranoside) (6), and (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-3beta,22-dihydroxycholest-5-en-1beta-yl O-alpha-l-rhamnopyranosyl-(1-->2)-O-[beta-d-xylopyranosyl-(1-->3)]-beta-d-xylopyranoside (7), respectively. This is the first isolation of a series of cholestane glycosides from a Ruscus species.  相似文献   

8.
The product of gene 16 of phage P22, P16, is a head protein. P16 does not play an essential role in phage assembly since particles formed without this protein appear normal by electron microscopy examination (Botstein et al., 1973). P16 is essential when the particle infects a cell in the following cycle of infection (Botstein et al., 1973; King et al., 1973). We have characterized a mutant of P22 carrying a temperature-sensitive allele of gene 16. This mutant has previously been referred to as P22 25-ts (Levine et al., 1970, 1972) and P22 X-ts (Bezdek and Soska, 1970, 1973). P22 16-ts behaves as an early mutant at the nonpermissive temperature. Temperature shift experiments show that P16 of the infecting virion acts within the first 10 min at 25 C and that gene 16 product is required late in the latent period for incorporation into infectious phage. Induction does not require P16 for the production of particles. Particles produced either in a P22 16-ts thermal shift-up infection or after induction of 16-ts lysogens at 41 C are missing P16 and are, therefore, defective. P16 in P22 16-ts virions formed at the permissive temperature appears to be heat labile; it is inactivated after infection at 41 C. A simple assay for defective particles based on a complementation test is described.  相似文献   

9.
Phytochemical examination of the bulbs of Ornithogalum saundersiae yielded six cholestane rhamnosides, two of which had previously been isolated from the same plant material. However, detailed spectroscopic analysis of the aglycone led us to revise the configuration of the C-11 hydroxyl group of the latter two and reassign their structures as (22S)-cholest-5-ene-3 beta,11 alpha,16 beta,22-tetrol 16-O-alpha-L-rhamnopyranoside and (22S)-cholesta-5,24-diene-3 beta,11 alpha,16 beta,22-tetrol 16-O-alpha-L-rhamnopyranoside, respectively. The other four are new naturally occurring constituents and their structures were determined to be (22S)-cholest-5-ene-3 beta,11 alpha,16 beta,22-tetrol 16-O-(2,3-di-O-acetyl-alpha-L-rhamnopyranoside), (22S)-cholest-5-ene-3 beta,11 alpha,16 beta,22-tetrol 16-O-{2-O-acetyl-3-O-(3,4,5-trimethoxybenzoyl)-alpha-L-rhamnopyran oside}, (22S)-cholest-5-ene-3 beta,11 alpha,16 beta,22-tetrol 16-O-{2-O-acetyl-3-O-(p-methoxybenzoyl)-alpha-L-rhamnopyranoside} and (22S)-cholesta-5,24-diene-3 beta,11 alpha,16 beta,22-tetrol 16-O-(2,3-di-O-acetyl-alpha-L-rhamnopyranoside), respectively. The isolated compounds were evaluated for their cytostatic activity against leukemia HL-60 cells.  相似文献   

10.
The proband was a 22-year-old woman who had two spontaneous abortions in the first trimester of pregnancy. She had a consanguineous marriage with no history of malformation or developmental disorders in the family. Her gynecological examination was normal. Chromosome analysis of the family showed two different katyotypes 46,XY,t(1;16)(p22;p13) and 46,XX,t(1;16)(q24;q24) using high-resolution banding (HRB). Proband's family was also examined for chromosome analysis. A t(1;16)(p22;p13) was found in the husband's father and other relatives, and a t(1;16)(q24;q24) translocation in the proband's family. This second tanslocation is not found in her parents.  相似文献   

11.
Proximal mouse Chromosome (Chr) 16 shows conserved synteny with human Chrs 16, 8, 22, and 3. The mouse Chr 16/human Chr 22 conserved synteny region includes the DiGeorge/Velocardiofacial syndrome region of human Chr 22q11.2. A physical map of the entire mouse Chr 16/human Chr 22 region of conserved synteny has been constructed to provide a substrate for gene discovery, genomic sequencing, and animal model development. A YAC contig was constructed that extends ca. 5.4 Mb from a region of conserved synteny with human Chr 8 at Prkdc through the region conserved with human Chr 3 at DVL3. Sixty-one markers including 37 genes are mapped with average marker spacing of 90 kb. Physical distance was determined across the 2.6-Mb region from D16Mit74 to Hira with YAC fragmentation. The central region from D16Jhu28 to Igl-C1 was converted into BAC and PAC clones, further refining the physical map and providing sequence-ready template. The gene content and borders of three blocks of conserved linkage between human Chr 22q11.2 mouse Chr 16 are refined. Received: 4 November 1998 / Accepted: 21 December 1998  相似文献   

12.
Ovary maturation, oocyte differentiation, and embryonic development in shrimp are highly dependent on nutritional lipids taken up by female broodstocks. These lipids are important as energy sources as well as for cell signaling. In this study, we report on the compositions of major lipids, i.e. phosphatidylcholines (PCs), triacylglycerols (TAGs), and fatty acids (FAs), in the ovaries of the banana shrimp, Penaeus merguiensis, during ovarian maturation. Thin-layer chromatography analysis showed that the total PC and TAG signal intensities increased during ovarian maturation. Further, by using gas chromatography, we found that (1) FAs 14:0, 16:1, 18:1, 18:2, 20:1, and 22:6 proportionally increased as ovarian development progressed to more mature stages; (2) FAs 16:0, 18:0, 20:4, and 20:5 proportionally decreased; and (3) FAs 15:0, 17:0, and 20:2 remained unchanged. By using imaging mass spectrometry, we found that PC 16:0/16:1 and TAG 18:1/18:2/22:6 were detected in oocytes stages 1 and 2. PCs 16:1/20:4, 16:0/22:6, 18:3/22:6, 18:1/22:6, 20:5/22:6, and 22:6/22:6 and TAGs 16:0/16:1/18:3, 16:0/18:1/18:3, 16:0/18:1/18:1, and 16:0/18:2/22:6 were present in all stages of oocytes. In contrast, the PC- and TAG-associated FAs 20:4, 20:5, and 22:6 showed high signal intensities in stage 3 and 4 oocytes. These FAs may act as nutrition sources as well as signaling molecules for developing embryos and the hatching process. Knowledge of lipid compositions and localization could be helpful for formulating the diet for female broodstocks to promote fecundity and larval production.  相似文献   

13.
Chebaro Y  Derreumaux P 《Proteins》2009,75(2):442-452
Aggregation of the Abeta1-40/Abeta1-42 peptides is a key factor in Alzheimer's disease. Though the inhibitory effect of N-methylated Abeta16-22 (mAbeta16-22) peptides is well characterized in vitro, there is little information on how they disassemble full-length Abeta fibrils or block fibril formation. Here, we report coarse-grained implicit solvent molecular dynamics (MD) and replica exchange molecular dynamics (REMD) simulations on Abeta16-22 and mAbeta16-22 monomers, and then a preformed six-chain Abeta16-22 bilayer with either four copies of Abeta16-22 or four copies of mAbeta16-22. Our simulations show that the effect of N-methylation on mAbeta16-22 monomer is to reduce the density of compact forms. While 100 ns MD trajectories do not reveal any significant differences between the two ten-chain systems, the REMD simulations totaling 1 micros help understand the first steps of Abeta16-22 protofibril disassembly by N-methylated inhibitors. Notably, we find that mAbeta16-22 preferentially interacts with Abeta16-22 by blocking both beta-sheet extension and lateral association of layers, but also by intercalation of the inhibitors allowing sequestration of Abeta16-22 peptides. This third binding mode is particularly appealing for blocking Abeta fibrillogenesis.  相似文献   

14.
Summary A normal baby was cytogenetically examined immediately after birth for the possible presence of a fragile (16)(q22), which had been found in her mother and in her retarded sister with a 46,XX;46,XX,del(16)(q22) mosaic karyotype. Distamycin a was added to the cultures to enhance the fragile (16)(q22) expression. The response of the baby to the action of distamycin a in vitro was much greater than that of her family members. A fragile (16)(q22) was induced in many cells as well as a fragile (1)(q32), which was also found in her mother. This fragile site, which is known to be a cancer breakpoint, has not been reported so far either to be familial or to be inducible by distamycin A. The concomitance of fragile (1)(q32) with fragile (16)(q22) and their possible significance are considered.  相似文献   

15.
Fragile chromosome 16(q22) cause a balanced translocation at the same point   总被引:1,自引:1,他引:0  
A father with a fragile 16(q22) has a son with a de novo balanced translocation 1;16. Both the fragile site and the break point at chromosome 16 are similar (q22). The question of whether the fragile site can cause a structural chromosome abnormality at the same point is discussed.  相似文献   

16.
The fatty acid (FA) composition of zooxanthellae, polyp tissue, and intact colonies was determined in soft coral Sinularia sp. and hard coral Acropora sp. Analysis of the distribution of polyunsaturated fatty acids (PUFAs) among the zooxanthellae and the host organism showed that 18: 3n-6 and C18–22 PUFAs of the n-3 series (18: 4n-3, 20: 5n-3, 22: 5n-3, and 22: 6n-3) were mainly synthesized by the zooxanthellae and that C20–22 PUFAs of the n-6 series (20: 3n-6, 20: 4n-6, and 22: 4n-6) were synthesized in the polyp tissue. Soft coral polyps were able to synthesize tetracosapolyenoic FAs (24: 5n-6 and 24: 6n-3) and 18: 2n-7, their zooxanthellae synthesized C16 PUFAs (16: 2n-7, 16: 3n-4, and 16: 4n-1). It is supposed that the biosynthesis of 16: 2n-7 in Sinularia sp. and 18: 3n-6 in Acropora sp. is catalyzed by Δ6 desaturase. The relatively even distribution of three FAs (18: 2n-6, 18: 3n-6, and 16: 2n-7) among lipids of zooxanthellae and coral polyps indicates the possible transport of these FAs between symbionts and the host organism.  相似文献   

17.
Two microsatellite markers, D22S1743 and D22S1744, were developed for the arylsulfatase A (ARSA) region of chromosome 22q. Linkage analysis for 171 families, using nine reference markers covering all of 22q, placed these new markers 2.0 Kosambi cM distal to D22S526, making them more distal than any microsatellite markers currently on the Généthon or Marshfield linkage maps. Recombination between proximal markers D22S270/D22S683 and D22S446/D22S311 exhibited increased rates of female meiotic recombination compared to male recombination (P < 0.01). In contrast, the region encompassing sJCW16, D22S526, D22S1743, and D22S1744 exhibited relatively greater recombination in males (1.1 cM for females and 7.5 cM for males; chi(2); P < 0.005). These four distal markers lie in a region of hyperrecombination having a sex-averaged recombination ratio of between 8.3 (D22S1843/D22S1744) and 12 cM (sJCW16/D22S526) per megabase.  相似文献   

18.
Multiple long molecular dynamics simulations are used to probe the oligomerization mechanism of Abeta(16-22) (KLVFFAE) peptides. The peptides, in the monomeric form, adopt either compact random-coil or extended beta strand-like structures. The assembly of the low-energy oligomers, in which the peptides form antiparallel beta sheets, occurs by multiple pathways with the formation of an obligatory alpha-helical intermediate. This observation and the experimental results on fibrillogenesis of Abeta(1-40) and Abeta(1-42) peptides suggest that the assembly mechanism (random coil --> alpha helix --> beta strand) is universal for this class of peptides. In Abeta(16-22) oligomers both interpeptide hydrophobic and electrostatic interactions are critical in the formation of the antiparallel beta sheet structure. Mutations of either hydrophobic or charged residues destabilize the oligomer, which implies that the 16-22 fragments of Arctic (E22G), Dutch (E22Q), and Italian (E22K) mutants are unlikely to form ordered fibrils.  相似文献   

19.
Saccharomyces cerevisiae Prp22 and Prp16 are RNA-dependent ATPases required for pre-mRNA splicing. Both proteins are members of the DEXH-box family of nucleic acid-dependent NTPases. Prior mutational analysis of Prp22 and Prp16 identified residues within conserved motifs I (GXGKT), II (DEAH), and VI (QRXGRXGR) that are required for their biological activity. Nonfunctional Prp22 and Prp16 mutants exerted a dominant negative effect on cell growth. Here we show that overexpression of lethal Prp22 mutants leads to accumulation of unspliced pre-mRNAs and excised introns in vivo. The biochemical basis for the lethality and inhibition of splicing in vivo was determined by purifying and characterizing recombinant mutant proteins. The lethal Prp22 mutants D603A and E604A in motif II and Q804A and R808A in motif VI were defective for ATP hydrolysis and mRNA release from the spliceosome, but were active in promoting step 2 transesterification. Lethal Prp16 mutants G378A and K379A in motif I; D473A and E474A in motif II; and Q685A, G688A, R689A, and R692A in motif VI were defective for ATP hydrolysis and step 2 transesterification chemistry. The ATPase-defective mutants of Prp16 and Prp22 bound to spliceosomes in vitro and blocked the function of the respective wild-type proteins in trans. Comparing the mutational effects in Prp16 and Prp22 highlights common as well as distinct structural requirements for the ATP-dependent steps in pre-mRNA splicing.  相似文献   

20.
Bovine rhodopsin was reconstituted into mixtures of didocosahexaenoylphosphatidylcholine (di22:6-PC), dipalmitoylphosphatidylcholine (di16:0-PC), sn-1-palmitoyl-sn-2-docosahexaenoylphosphatidylcholine (16:0, 22:6-PC) and cholesterol. Rhodopsin denaturation was examined by using high-sensitivity differential scanning calorimetry. The unfolding temperature was increased at lower levels of lipid unsaturation, but the highest temperature was detected for native disk membranes: di22:6-PC < 16:0,22:6-PC < di16:0,18:1-PC < native disks. The incorporation of 30 mol% of cholesterol resulted in 2-4 degrees C increase of denaturation temperature in all reconstituted systems examined. From the analysis of van't Hoff's and calorimetric enthalpies, it was concluded that the presence of cholesterol in di22:6-PC-containing bilayers induces a level of cooperativity in rhodopsin unfolding. Fluorescence resonance energy transfer (FRET), using lipids labeled at the headgroup with pyrene (Py) as donors and rhodopsin retinal group as acceptor of fluorescence, was used to study rhodopsin association with lipids. Higher FRET efficiencies detected for di22:6-PE-Py, compared to di16:0-PE-Py, in mixed di22:6-PC-di16:0-PC-cholesterol bilayers, indicate preferential segregation of rhodopsin with polyunsaturated lipids. The effective range of the rhodopsin-lipid interactions facilitating cluster formation exceeds two adjacent lipid layers. In similar mixed bilayers containing no cholesterol, cluster formation was absent at temperatures above lipid phase transition, indicating a crucial role of cholesterol in microdomain formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号