首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A general model for the evolution of pathogen populations on mixtures or multilines is developed. This model is used to extend previous analyses of the effects of the widespread cultivation of multilines on the evolution of virulence in obligate parasites to mixtures of lines carrying different numbers of resistance genes. It is concluded that the composition of an equilibrium pathogen population growing on a multiline may vary within wide limits and the prinicipal determinant of its composition is the number of components in the multiline and the resistance genes they carry. Other factors of importance are (i) the relative contribution made by each host class (with different numbers of resistance genes) to the pathogen spore pool each generation; (ii) the levels of stabilizing selection against unnecessary virulence genes; and (iii) the way in which unnecessary genes for virulence combine to reduce pathogen fitness. Conditions for the fixation of avirulent biotypes in the pathogen population and the evolution of a pathogen superrace are given for multilines of various compositions.Paper No. 9246 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina. This investigation was supported in part by NIH Research Grant No. GM 11546 from the National Institute of General Medical Sciences  相似文献   

2.
Russian apple R12740-7A is the designation for an accession grown from seed collected in Russia, which was found to be highly resistant to apple scab. The resistance has historically been attributed to a naturally pyramided complex involving three major genes: one race-nonspecific gene, Vr, conditioning resistance to all known races, plus two race-specific genes. The race-nonspecific gene was identified as an independently segregating gene by Dayton and Williams (1968) and is referred to in this paper as Vr-DW. The first researchers to study the scab resistance gene complex in Russian apple never described the phenotype conditioned by the race-nonspecific gene. Later, Aldwinckle et al. (1976) associated the name Vr with a scab resistance gene conditioning distinctive stellate necrotic reactions, which we refer to as Vr-A in order to distinguish it from Vr-DW. We show that the segregation ratios in progenies from the scab differential hosts 2 and 4 that are derived from Russian apple, crossed with susceptible cultivars were consistent with a single gene conditioning resistance in each host. The genes have been named Vh2 and Vh4, respectively. Resistant segregants from host 2 showed stellate necrotic reactions, while those from host 4 showed hypersensitive reactions. Both the phenotypes and the genetic maps for the genes in the respective hosts were very similar to those of the genes previously named Vr-A and Vx, respectively, in an F1 family of Russian apple. We showed that race 2 of V. inaequalis isolated from host 2 was able to infect resistant descendants of the non-differential accession PRI 442-23 as well as host 2. The descendants of PRI 442-23 were expected to carry the race-nonspecific Vr-DW gene, but in fact carry Vr-A. We conclude that the Vh2 gene in host 2 and Vr-A are the same, and that the Vh4 gene in host 4 and Vx are the same. However, a major finding of this study is that the latter gene mapped to linkage group 2 of apple instead of linkage group 10 as suggested from previous research. With the two race-specific genes from Russian apple defined now, we discuss the nature of the race-nonspecific Vr-DW gene in this accession. We also report the identification of a new scab resistance gene, VT57, from either Golden Delicious or Red Dougherty, which conditions chlorotic resistance reactions and is linked to Vh2.  相似文献   

3.
Summary The genes controlling resistance to three wheat rusts, viz., leaf rust (Lr26), stem rust (Sr31) and stripe or yellow rust (Yr9), and -secalins (Sec1), located on the short arm of rye chromosome 1R, were mapped with respect to each other and the centromere. Analysis of 214 seeds (or families derived from them) from testcrosses between a 1BL.1RS/1R heterozygote and Chinese Spring ditelocentric 1BL showed no recombination between the genes for resistance to the three rusts, suggesting very tight linkage or perhaps a single complex locus conferring resistance to the three rusts. The rust resistance genes were located 5.4 ± 1.7 cM from the Sec1 locus, which in turn was located 26.1 ± 4.3 cM from the centromere; the gene order being centromere — Sec1Lr26/Sr31/Yr9 — telomere. In a second test-cross, using a different 1BL.1RS translocation which had only stem rust resistance (SrR), the above gene order was confirmed despite a very large proportion of aneuploids (45.8%) among the progeny. Furthermore, a map distance of 16.0 ± 4.8 cM was estimated for SrR and the telomeric heterochromatin (C-band) on 1RS. These results suggest that a very small segment of 1RS chromatin is required to maintain resistance to all three wheat rusts. It should be possible but difficult to separate the rust resistance genes from the secalin gene(s), which are thought to contribute to dough stickiness of wheat-rye translocation lines carrying 1RS.  相似文献   

4.
Summary A mathematical model is presented and analysed to find the conditions under which changes in gene frequencies can be used in asexually reproducing populations for estimating fitness of single genes, for example, for estimating the fitnesses of unnecessary virulence genes relative to their corresponding avirulence genes. It is concluded that the underlying distribution of relative fitness of clones (genotypes) has to be unimodal and that many populations consisting of a mixture of distinguishable clones then provide the best experimental data for estimating relative fitness of single genes. An improved statistical test procedure, i.e. generalized logistic regression, is suggested for analysing changes in gene frequencies in population experiments with a mixture of distinguishable clones. A population study of Erysiphe graminis f.sp. hordei (Klug-Andersen 1980) provides data to illustrate the procedure in the case where the population consists of a large number of genotypes. A bimodal distribution of genotypes possessing the virulence gene is indicated here.  相似文献   

5.
Summary The inheritance of resistance to brown planthopper, Nilaparvata lugens (Stol.), of 20 rice cultivars was studied. Single dominant genes that are allelic to Bph 3 condition the resistance in cultivars Ptb 19, Gangala (Acc. 7733), Gangala (Acc. 15207), Horana Mawee, Kuruhondarwala, Mudu Kiriyal and Muthumanikam. Single recessive genes that are allelic to bph 4 govern the resistance in cultivars Gambada Samba, Heenhoranamawee, Hotel Samba, Kahata Samba, Kalukuruwee, Lekam Samba, Senawee, Sulai, Thirissa and Vellai Illankali. The resistance in Ptb 33, Sudu Hondarwala, and Sinna Sivappu is governed by one dominant and one recessive gene which segregate independently of each other. The dominant resistance genes in these cultivars appear allelic to either Bph 1 or Bph 3. Similarly, the recessive genes in these cultivars seem allelic to either bph 2 or bph 4. Further investigations are needed to conclusively determine the allelic relationships of resistance genes in Ptb 33, Sudu Hondarwala and Sinna Sivappu.  相似文献   

6.
The protein and gene sequences of the cowpea Bowman-Birk type trypsin inhibitor which confers enhanced insect resistance to transgenic tobacco plants, and of cowpea trypsin/chymotrypsin inhibitors are presented. There are regions of high conservation and high divergence within the 5 leader, mature protein and 3 non-coding regions of the Bowman-Birk inhibitors and in the genes which encode them in different members of this family within the Leguminosae. The practical implications of this finding for studies on the evolution of plants and the utilization of these genes for enhancing insect resistance is discussed.  相似文献   

7.
Doubled haploid (DH) progeny from a cross between the scald susceptible barley (Hordeum vulgare L.) cultivar Ingrid and the resistant accession CI 11549 (Nigrinudum) was evaluated for resistance in the pathogen Rhynchosporium secalis (Oudem) J.J. Davis. Two linked and incompletely dominant loci confer resistance CI 11549 against isolate 4004. One is an allele at the complex Rrs1 locus on chromosome 3H close to the centromere; the other is located 22 cM distally on the long arm. The latter locus is designated Rrs4. In BC3-lines into Ingrid from CI 2222 (another Nigrinudum) resistance seems governed by one locus close to the telomeric region of chromosome 7H, probably allelic to Rrs2. In neither case did we find any trace of the recessive gene rh8 reported to be present in Nigrinudum. Various resistance donors of Ethiopian origin designated as Nigrinudum, Jet or Abyssinian were identical to a great extent with respect to markers, but differed in resistance to different isolates of scald or in barley yellow dwarf virus (BYDV) resistance. The implications for their use as differentials in scald tests and screening of germplasm collections are discussed.  相似文献   

8.
Members of the (13)--glucan glucanohydrolase (EC 3.2.1.39) gene family have been mapped on the barley genome using three doubled haploid populations and seven wheat-barley addition lines. Specific probes or polymerase chain reaction (PCR) primers were generated for the seven barley (13)--glucanase genes for which cDNA or genomic clones are currently available. The seven genes are all located on the long arm of chromosome 3 (3HL), and genes encoding isoenzymes GI, GII, GIII, GIV, GV and GVII (ABG2) are clustered in a region less than 20 cM in length. The region is flanked by the RFLP marker MWG2099 on the proximal side and the Barley Yellow Mosaic Virus (BYMV) resistance gene ym4 at the distal end. The gene encoding isoenzyme GVI lies approximately 50 cM outside this cluster, towards the centromere. With the exception of the gene encoding isoenzyme GIV, all of the (13)--glucanase genes are represented by single copies on the barley genome. The probe for the isoenzyme GIV gene hybridized with four DNA bands during Southern blot analysis, only one of which could be incorporated into the consensus linkage map.  相似文献   

9.
Two dominant genes conferring complete resistance to specific isolates of the rice blast fungus, Pyricularia grisea Sacc., were located on the molecular map of rice in this study. Pi-l(t) is a blast resistance gene derived from the cultivar LAC23. Its map location was determined using a pair of nearly isogenic lines (NILs) and a B6F3 segregating population from which the isoline was derived. RFLP analysis showed that Pi-l(t) is located near the end of chromosome 11, linked to RZ536 at a distance of 14.0±4.5 centiMorgans (cM). A second gene, derived from the cultivar Apura, was mapped using a rice doubled-haploid (DH) population. This gene was located on chromosome 12, flanked by RG457 and RG869, at a distance of 13.5+-4.3 cM and 17.7+-4.5 cM, respectively. The newly mapped gene on chromosome 12 may be allelic or closely linked toPi-ta. (=Pi-4(t)), a gene derived from Tetep that was previously reported to be linked to RG869 at a distance of 15.4±4.7 cM. The usefulness of markers linked to blast resistance genes will be discussed in the context of breeding for durable blast resistance.  相似文献   

10.
Summary A new Hessian fly (Mayetiola destructor) resistance gene derived from Balbo rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant Balbo rye and susceptible Suwon 92 wheat and between the F1 amphidiploids and susceptible TAM 106 and Amigo wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats TAM 106, TAM 101, and Vona. After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 m) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs.Cooperative investigations of the Kansas Agricultural Experiment Station, Departments of Entomology and Plant Pathology, the Wheat Genetics Resource Center, Kansas State University, and the US Department of Agriculture, Agricultural Research Service. Contribution No. 91-117-JDeceased  相似文献   

11.
Here, we describe two nearly identical expressed genes for cytosolic glutamine synthetase (GS3A and GS3B) in Pisum sativum L. RFLP mapping data indicates that the GS3A and GS3B genes are separate loci located on different chromosomes. DNA sequencing of the GS3A and GS3B genes revealed that the coding regions are 99% identical with only simple nucleotide substitutions resulting in three amino acid differences. Surprisingly, the non-coding regions (5 non-coding leader, the 11 introns, and 3 non-coding tail) all showed a high degree of identity (96%). In these non-coding regions, 25% of the observed differences between the GS3A and GS3B genes were deletions or duplications. The single difference in the 3 non-coding regions of the GS3A and GS3B genes was a 25 bp duplication of an AU-rich element in the GS3B gene. As the GS3B mRNA accumulates to lower levels than the GS3A gene, we tested whether this sequence which resembles an mRNA instability determinant functioned as such in the context of the GS mRNA. Using the GS3B 3 tail as part of a chimeric gene in transgenic plants, we showed that this AU-rich sequence has little effect on transgene mRNA levels. To determine whether the GS3A/GS3B genes represent a recent duplication, we examined GS3-like genes in genomic DNA of ancient relatives of P. sativum. We observed that several members of the Viceae each contain two genomic DNA fragments homologous to the GS3B gene, suggesting that this is an ancient duplication event. Gene conversion has been invoked as a possible mechanism for maintaining the high level of nucleotide similarity found between the GS3A and GS3B genes. Possible evolutionary reasons for the maintenance of these twin GS genes in pea, and the general duplication of genes for cytosolic GS in all plant species are discussed.  相似文献   

12.
Tobacco cells are sensitive to bleomycin and phleomycin. The Tn5 and the Streptoalloteichus hindustanus (Sh) bleomycin resistance (Ble) genes conferring resistance to these antibiotics have each been inserted into two plant expression vectors. They are flanked by the nopaline synthase (nos) or the cauliflower mosaic virus (CaMV) 35S promoters on one side, and by the nos polyadenylation signal on the other. These four chimaeric genes were introduced into the binary transformation vector pGA 492, which were thereafter mobilized into Agrobacterium tumefaciens strain LBA 4404. The resulting strains were used to transform Nicotiana tabacum cv. Xanthi nc using the leaf disc transformation procedure. In all cases, phleomycin- and bleomycin-resistant tobacco plants were regenerated from transformed cells under selective conditions; however the highest frequency of rooted plants was obtained when transformation was carried out with the Sh Ble gene under the control of the 35S promoter. Phleomycin resistance was stably transmitted to sexual offspring as a dominant nuclear trait as confirmed by Southern blotting.  相似文献   

13.
Summary The question, Is Hb G Philadelphia linked to -thalassaemia? was first posed because the abnormal haemoglobin is found in heterozygotes at a concentration greater than 25%, the proportion predicted from a 4 -chain gene model. Globin chain biosynthesis was studied in a West Indian family in which one parent had + thalassaemia and the other was heterozygous for the G Philadelphia chain gene. The former had a globin chain production ratio / well above 1, while the latter had a ratio significantly less than 1. One child of the marriage had inherited the + thallassaemia from one parent and the G Philadelphia chain gene from the other and showed the typical picture of /-thalassaemia (/ ratio slightly above normal). It is explained in the discussion that the evidence favours a close linkage of 2 -chain genes.  相似文献   

14.
Summary A genetic procedure for selection of specific clones, by homologous recombination between clones from a gene clonotheque and sequences cloned into a plasmid, was developed. Resulting clones are isolated in transduction experiments by plating infected Escherichia coli cells under conditions selecting for the antibiotic resistance marker carried by the plasmid. The feasibility of the method was demonstrated in a model test system as well as by isolation of -interferon-specific sequences from the human gene clonotheque.  相似文献   

15.
Rye chromosomes of wheat-rye addition lines were successfully identified by means of an RFLP analysis with 30 probes. Our results are in agreement with previous cytological data concerning the identity of lines F (+1R), D (+2R), C (+3R), A (+4R), E (+5R) and B (+7R). Two categories of chromosomal rearrangements have been distinguished, namely: (1) deletions: the current line D possesses a chromosome 2R deleted on its short arm and the line G a chromosome 3R deleted on its long arm; we have also noticed a deletion on the long arm of wheat chromosome 1A in line F61; and (2) evolutionary reciprocal translocations in rye relative to wheat which have been previously mentioned in the literature. The anther culture response of the different lines was studied. A significant difference between FEC 28 and the addition lines was observed for embryo production and plant regeneration. It appears that genes located on S 10 chromosome arm 3RL and on FEC 28 chromosome arm 1AL increase embryo frequency whereas gene(s) located on S 10 chromosome 5R reduce(s) it. Plant regeneration results suggest that genes increasing regeneration ability and green-plant frequency are located on S 10 chromosome 4R. The long arm of chromosome 1A seems to be involved positively in green-plant regeneration whereas chromosomes 1R and 3R limit plant regeneration.  相似文献   

16.
Summary Progenies of a tetraploid 1BL/1RS wheat-rye translocation line, CV 256, selected from the cross Cando x Veery, were analyzed by means of Giemsa C-banding. CV 256 is cytologically stable for the presence of the 1BL/1RS translocation but still segregating for A- and B-genome chromosomes of Cando and Veery. In CV 256, nucleolar activity of the 1RS NOR locus is suppressed, as judged by the absence of a secondary constriction in that rye segment and the capability of organizing nucleoli. PAGE analysis of prolamins confirmed the presence of two 1RS secalins in all single seeds analyzed. SDS-PAGE analysis of reduced glutenins of single seeds indicated that some seeds contained the Cando Glu-B1 locus (subunits 6+8), some contained the Veery Glu-B1 locus (subunits 7+9) while others contained all four subunits, indicating that the material was heterozygous. Pm8 resistance is expressed in the tetraploid 1BL/1RS translocation line based on the reactions of six well-defined powdery mildew isolates. However, Pm8 resistance is not expressed in the hexaploid wheat cultivars Olymp, Heinrich and Florida, which also contain the 1BL/1RS translocation. Obviously, the existence of the 1BL/1RS translocation is not a proof for the expression of the associated genes. PAGE results did not show a clear linkage between powdery mildew resistance and the presence of 1RS secalins.  相似文献   

17.
Summary Genes for -amylase, alcohol dehydrogenase, andEm, an ABA-regulated gene expressed late in embryogenesis, were localized on rice chromosomes by the analysis of primary trisomies. The validity of the mapping approach was confirmed usingAdh-1 as a control. TheAdh-1 gene has previously been assigned to chromosome 11 using conventional techniques. In this study we confirm this assignment and report an additional locus for alcohol dehydrogenase (Adh-2) on chromosome 9. The -amylase genes were located on chromosomes 1, 2, 6, 8, and 9 while theEm gene was mapped to chromosome 5. To facilitate trisomic analysis and correlation of cloned genes with bands observed on Southern blots, a nomenclature for the rice -amylase genes has been proposed. In addition to mapping nine cloned -amylase genes, we have identified two previously uncloned -amylase genes as part of this study. Polymorphism for -amylase genes belonging to each of the three subfamilies was observed between M202 and IR36. The maximum degree of polymorphism was found among genes belonging to the RAmy3 subfamily, which also has the most diverse group of genes.  相似文献   

18.
The percentages of the -chain variant Hb G-Philadelphia (Hb G) or 2 68 AsnLys2 were evaluated in 84 adult and 18 newborn heterozygotes. These included members of three families who were studied in more detail by nucleic acid hybridization techniques. The adult heterozygotes fell in two categories, one with a higher proportion of Hb G [46.5±1.0% (SD), N=21] and another with lower values (33.9±3.4%, N=63). Among the newborn heterozygotes, two babies fell in the category with the higher proportion of Hb G while 16 babies gave values between 25 and 34%. Studies of -chain gene organization on the parents of one neonate with a Hb G level of 27% at birth and 37% at 8 months excluded the presence of chromosomes with triplicated -chain genes which could lead to the 0G/ genotype. Rather, these studies on five Hb G heterozygotes from three families confirmed the linkage between Hb G and a specific type of -thalassemia-2 associated with the presence of a 16-kbp Bgl II fragment which most probably carries the G locus since it has been found in 19 Hb G heterozygotes studied to date. The presence of an -thal-2 heterozygosity and three -chain genes (0G/) was confirmed among Hb G heterozygotes with lower proportions of this variant. It is likely that the even lower values found in some newborn could arise through defective assembly of G- dimers. The presence of an -thal-2 homozygosity and two active -chain genes, one on each chromosome (0G/0), was confirmed among heterozygotes with the higher proportion of Hb G. One of each of these categories was present in each of the three families investigated. This type of variability in the number of active -chain genes due to a heterozygosity or a homozygosity for -thalassemia-2 explains the trimodality of Hb S percentages among heterozygotes and the atypical hematological or biosynthetic features among patients with -thalassemia and sickle-cell syndromes.This research was supported by USPHS Research Grants HLB-05168 and HLB-15158 and by designated research funds of the Veterans Administration. This is Contribution No. 0693 of the Department of Cell and Molecular Biology, Medical College of Georgia, Augusta.  相似文献   

19.
Pepper (Capsicum chinense Jacq.) has been reported to be an important reservoir of resistance genes to tomato spotted wilt virus (TSWV). The genes for TSWV resistance present in three C. chinense lines (PI 152225, PI 159236 and Panca) were investigated for allelism. All resistant lines were crossed with each other. Parents, F1, backcrosses and F2 populations (including reciprocals) developed from those crosses were mechanically inoculated with a highly virulent TSWV isolate. Susceptible C. annuum cv Magda was used to check inoculum virulence. Fifty plants of the F1 hybrids; Magda x PI 152225, Magda x PI 159236, and Magda x 'Panca, were also inoculated with the TSWV isolate. The resistance response in all C. chinense sources was associated with a localized, hypersensitive-like reaction that was phenotypically expressed as a prompt formation of large local lesions accompanied by premature leaf abscission. All F1 generations presented a final score of resistant; indicating that the expression of resistance to TSWV is conditioned by a dominant gene regardless of the source. The absence of segregation for resistance to TSWV that was observed in all generations of the crosses between C. chinense lines indicated that either a tightly linked group of genes exists or that the resistance is governed by the same single major gene (probably the already described Tsw gene). Previous reports have indicated that the Tsw gene is not effective against tospovirus members of serogroup II, i.e. tomato chlorotic spot virus (TCSV) and groundnut ring spot virus (GRSV). In the assay described here, all of the C. chinense lines showed, after mechanical inoculation, an identical susceptibility response to the TCSV and GRSV isolates.  相似文献   

20.
Inheritance of resistance to blackmold, a disease of ripe tomato fruit caused byAlternaria alternata, was studied in two interspecific crosses. The parents, F1 and F2 generations of a cross between the susceptibleLycopersicon esculentum Mill. cultivar Hunt 100 and the resistantL. Cheesmanii f.typicum Riley accession LA 422, and the parents, F1, F2, F3, and BC1 P2 generations of a cross between the susceptibleL. Esculentum cv. VF 145B-7879 and LA 422 were evaluated. The following disease evaluation traits were used: symptom rating (a symptom severity rating based on visual evaluation of lesions), diseased fruit (the number of diseased fruits divided by the total number of fruit scored), and lesion size (a function derived from the actual lesion diameter). Generation means analysis was used to determine gene action. The data of the Hunt 100 × LA 422 cross fit an additive-dominance model for all three traits. The VF 145B-7879 × LA 422 cross data best fit a model that included the additive × additive and additive × dominance interaction components for the trait diseased fruit, whereas higher-order epistatic models would have to be invoked to fit the data for the traits symptom rating and lesion size. A minimum of one gene segregated for all three traits. Broad-sense heritability estimates ranged from 0.09 to 0.16 for all three traits, indicating that selection for improved resistance to blackmold will require selection on a family performance basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号